首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   20篇
电工技术   5篇
综合类   1篇
化学工业   23篇
机械仪表   1篇
建筑科学   6篇
能源动力   1篇
轻工业   49篇
石油天然气   4篇
无线电   25篇
一般工业技术   41篇
冶金工业   6篇
原子能技术   2篇
自动化技术   11篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   12篇
  2011年   10篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1987年   1篇
  1981年   2篇
  1980年   1篇
  1974年   2篇
排序方式: 共有175条查询结果,搜索用时 171 毫秒
41.
42.
43.
44.
ABSTRACT: Four different postharvest treatments for removal of Salmonella from bell pepper and cucumber were examined, including washes with chlorinated water (HOCl; 200 ppm), acidified sodium chlorite (ASC; 1200 ppm), and peroxyacetic acid (PAA; 75 ppm), and treatment with gaseous chlorine dioxide (ClO2; total 100 mg). Only ClO2 gas was evaluated for decontamination of strawberries. Each produce was inoculated with approximately 1.0 × 107 colony-forming units (CFU) of a 5-serovar cocktail of Salmonella on artificially created wounds, smooth surfaces, and stem scar tissue. For tests involving smooth surface inoculation, ASC and PAA treatments decreased contamination to undetectable levels on bell pepper and cucumber, while the chlorine treatment of bell pepper reduced contamination by approximately 2-logs. For stem scar contamination on bell pepper, ASC and PAA treatments both showed >2-log unit reductions, and chlorine treatment showed a <1-log unit reduction. For puncture wounds on bell pepper, HOCl, ASC, and PAA treatments reduced bacterial levels approximately 2-, 3-, and 1-log units, respectively, indicating that HOCl and ASC were more effective than PAA. These aqueous treatments of cucumber with puncture wounds reduced bacterial levels approximately 1-, 2-, and 2-log units, respectively. ClO2 treatment decreased counts to undetectable levels on all inoculation sites on cucumber and on strawberry smooth surfaces, but failed to completely eliminate Salmonella from bell pepper and from the stem scar and the puncture wounds of strawberry. ASC treatment of bell pepper and ClO2 gas treatments of cucumber showed the best efficiency for inactivation of Salmonella. ClO2 treatments effectively reduced Salmonella cells inoculated on the smooth surface and stem scar of strawberries compared with unsanitized control.  相似文献   
45.
Jia W  Chen Z  Wen FJ  Zhou C  Chow YT  Chung PS 《Applied optics》2011,50(34):H30-H35
We propose a novel configuration for angular multiplexing holographic encoding in which the signal beam and the reference beam are combined into a single beam. By using a spatial light modulator based on twisted nematic liquid crystals, the signal and the reference beams are modulated in amplitude mode and phase mode, respectively. The multiplexed interference patterns with the reference beams of different incident angles are recorded near the Fourier transform plane, and then the signals are selectively reconstructed by the corresponding reference beam. Both the simulation and the experiment of single-beam angular multiplexed holography are performed with consistent results. Compared with the traditional angular multiplexing holographic recording system, the single-beam configuration is more compact, easier to adjust, and less sensitive to the vibration of the environment. Therefore, it will be more attractive for potential applications in many fields, such as high-density signal recording and data encryption.  相似文献   
46.
Yi KS  Trivedi K  Floresca HC  Yuk H  Hu W  Kim MJ 《Nano letters》2011,11(12):5465-5470
Quantum confinement of carriers has a substantial impact on nanoscale device operations. We present electrical transport analysis for lithographically fabricated sub-5 nm thick Si nanowire field-effect transistors and show that confinement-induced quantum oscillations prevail at 300 K. Our results discern the basis of recent observations of performance enhancement in ultrathin Si nanowire field-effect transistors and provide direct experimental evidence for theoretical predictions of enhanced carrier mobility in strongly confined nanowire devices.  相似文献   
47.
48.
The objective of this study was to evaluate the efficacy of supercritical carbon dioxide (SCCO2) for inactivating Lactobacillus plantarum in apple cider using a continuous system with a gas-liquid metal contactor. Pasteurized apple cider without preservatives was inoculated with L. plantarum and processed using a SCCO2 system at a CO2 concentration range of 0-12% (g CO2/100 g product), outlet temperatures of 34, 38, and 42 °C, a system pressure of 7.6 MPa, and a flow rate of 1 L/min. Processing with SCCO2 significantly (P < 0.05) enhanced inactivation of L. plantarum in apple cider, resulting in a 5 log reduction with 8% CO2 at 42 °C. The response surface model indicated that both CO2 concentration and temperature contributed to the microbial inactivation. The extent of sublethal injury in surviving cells in processed apple cider increased as CO2 concentration and processing temperature increased, however the percent injury dramatically decreased during SCCO2 processing at 42 °C. Structural damage in cell membranes after SCCO2 processing was observed by SEM. Refrigeration (4 °C) after SCCO2 processing effectively inhibited the re-growth of surviving L. plantarum during storage for 28 days. Thus this study suggests that SCCO2 processing is effective in eliminating L. plantarum and could be applicable for nonthermal pasteurization of apple cider.  相似文献   
49.
Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future.  相似文献   
50.
In cases where machines having bursty data are equally likely to transmit to one another, code-division multiple-access (CDMA) ALOHA which allows for an individual “virtual channel” for each receiving station may be a better multiple-access protocol than simple ALOHA. With the use of a “receiver-based code” multiple-access protocol, it is also possible for a station to listen to the channel of the intended receiver before transmission, and also abort transmission when it detects others transmitting on the same channel. This paper describes a model for a fully-connected, full duplex, and slotted CDMA ALOHA network where channel sensing and collision detection are used. The model is analyzed using a discrete time Markov chain and some numerical results are presented. For a system with a large number of users, where Markov analysis is impractical, equilibrium point analysis is used to predict the stability of the system, and estimate the throughput as well as the delay performance of the system when it is stable. Finally, a comparison is made with a simple channel sense multiple-access with collision detection (CSMA-CD) network, showing that a substantial improvement in the performance is achieved by the proposed network  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号