首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1600713篇
  免费   28296篇
  国内免费   7025篇
电工技术   34629篇
综合类   6539篇
化学工业   267433篇
金属工艺   65860篇
机械仪表   45902篇
建筑科学   47594篇
矿业工程   11631篇
能源动力   50490篇
轻工业   123508篇
水利工程   16572篇
石油天然气   37168篇
武器工业   140篇
无线电   199680篇
一般工业技术   303406篇
冶金工业   215967篇
原子能技术   34323篇
自动化技术   175192篇
  2021年   15572篇
  2020年   12042篇
  2019年   14829篇
  2018年   17831篇
  2017年   17345篇
  2016年   22657篇
  2015年   17767篇
  2014年   29080篇
  2013年   88516篇
  2012年   38831篇
  2011年   53246篇
  2010年   45074篇
  2009年   52813篇
  2008年   48877篇
  2007年   46751篇
  2006年   47281篇
  2005年   42447篇
  2004年   44316篇
  2003年   44017篇
  2002年   42593篇
  2001年   39928篇
  2000年   37921篇
  1999年   37942篇
  1998年   61704篇
  1997年   49276篇
  1996年   39490篇
  1995年   34188篇
  1994年   31605篇
  1993年   31257篇
  1992年   26677篇
  1991年   24062篇
  1990年   24289篇
  1989年   23223篇
  1988年   21814篇
  1987年   20014篇
  1986年   19616篇
  1985年   22946篇
  1984年   22713篇
  1983年   20546篇
  1982年   19359篇
  1981年   19493篇
  1980年   18162篇
  1979年   18655篇
  1978年   17892篇
  1977年   18538篇
  1976年   21030篇
  1975年   16055篇
  1974年   15562篇
  1973年   15685篇
  1972年   13188篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
161.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
162.
One of the drawbacks of fusible clays is the narrow sintering interval due to a sharp increase in the amount of iron-silicate melt at a temperature of 1000–1100 °C, which hardens in the form of a glass phase upon cooling. This leads to a relatively low mechanical strength of the calcined samples and causes the danger of melting the granular material surface from such clays during the firing process. To increase the strength of samples of fusible clays, the influence of diabase and granitoid rocks was considered. It was found that the strengthening effect of diabase and granitoid rock additives in an amount of 20–50% in a mixture with fusible clay is due to an increase of total content of the crystalline phase (mullite, cristobalite and residual quartz) from 18–20% in clays without additives to 22–28 % - in mixtures with diabase and to 28–34% - with granitoid additives) at a temperature of 1050–1100 °C. This increase is due to the activation of synthesis processes of secondary mullite and crystallization from alkali-rich feldspar melt of amorphous silica, released from the structure of clay minerals. The established influence of the igneous rocks used made it possible to develop compositions and propose process flow sheet for producing aluminosilicate proppants based on fusible clays. The use of granitoid and diabase rocks in an amount of 20–70% with fusible clays produces lightweight aluminosilicate proppants with bulk density of 1.40–1.46 g/cm3 at temperature range of 1050–1100 °C, which can endure destructive pressures up to 34.5–52 MPa.  相似文献   
163.
Theoretical Foundations of Chemical Engineering - The corona onset voltage is an important operating parameter in the electrostatic precipitation of nanoparticulate, however, its experimental...  相似文献   
164.
Multimedia Tools and Applications - Gastrointestinal stromal tumor is one of the critical tumors that doctors do not suggest to get frequent endoscopy, so there is a need for a diagnosis system...  相似文献   
165.
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism’s nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.  相似文献   
166.
Kirovskaya  I. A.  Filatova  T. N.  Nor  P. E. 《Semiconductors》2021,55(2):228-233
Semiconductors - According to developed methods, in the fields of the mutual solubility of initial binary compounds (InP, InSb, and CdS), solid solutions of the InP–CdS and InSb–CdS...  相似文献   
167.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
168.
Trofimova  Elena G.  Lomovsky  Oleg I. 《SILICON》2021,13(2):433-439
Silicon - The products of solid-phase mechanochemical interaction between pyrocatechol and silicon dioxide yielding a powdered composite were studied using a number of physicochemical methods. This...  相似文献   
169.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
170.
Chemical and Petroleum Engineering - The processes of separation of impurities of particles of different sizes are analyzed under conditions of irregularity of structural and kinematic parameters...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号