首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   28篇
电工技术   7篇
综合类   1篇
化学工业   147篇
金属工艺   3篇
机械仪表   12篇
建筑科学   11篇
矿业工程   1篇
能源动力   42篇
轻工业   68篇
水利工程   5篇
无线电   48篇
一般工业技术   48篇
冶金工业   25篇
原子能技术   2篇
自动化技术   56篇
  2024年   2篇
  2023年   7篇
  2022年   8篇
  2021年   35篇
  2020年   24篇
  2019年   19篇
  2018年   31篇
  2017年   24篇
  2016年   26篇
  2015年   18篇
  2014年   28篇
  2013年   58篇
  2012年   31篇
  2011年   39篇
  2010年   24篇
  2009年   18篇
  2008年   15篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1965年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有476条查询结果,搜索用时 125 毫秒
1.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
2.
Kirovskaya  I. A.  Filatova  T. N.  Nor  P. E. 《Semiconductors》2021,55(2):228-233
Semiconductors - According to developed methods, in the fields of the mutual solubility of initial binary compounds (InP, InSb, and CdS), solid solutions of the InP–CdS and InSb–CdS...  相似文献   
3.
4.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
5.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
6.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
7.
A technique was developed for transfer of fat and polychlorinated biphenyls from cod liver oil into the lipophilic gel Lipidex 5000. Subsequent elution of the gel separated about 60% of the fat from the sample. Following further purification on aluminium oxide and silica gel, toxic non-ortho- and mono-ortho-PCB congeners were isolated in two separate fractions on charcoal. Recoveries were studied by addition of twelve different PCB congeners to 0.2 g of fat. The non-ortho-PCBs were labelled with 13C. The recoveries of 5-50 ng of the unlabelled compounds were 80-100% and those of 50-100 pg of the labelled compounds were 76-106%.  相似文献   
8.
Dysregulation of retinal function in the early stages of light-induced retinal degeneration involves pannexins and connexins. These two types of proteins may contribute to channels that release ATP, leading to activation of the inflammasome pathway, spread of inflammation and retinal dysfunction. However, the effect of pannexin channel block alone or block of both pannexin channels and connexin hemichannels in parallel on retinal activity in vivo is unknown. In this study, the pannexin channel blocker probenecid and the connexin hemichannel blocker tonabersat were used in the light-damaged rat retina. Retinal function was evaluated using electroretinography (ERG), retinal structure was analyzed using optical coherence tomography (OCT) imaging and the tissue response to light-induced injury was assessed immunohistochemically with antibodies against glial fibrillary acidic protein (GFAP), Ionized calcium binding adaptor molecule 1 (Iba-1) and Connexin43 (Cx43). Probenecid did not further enhance the therapeutic effect of connexin hemichannel block in this model, but on its own improved activity of certain inner retina neurons. The therapeutic benefit of blocking connexin hemichannels was further evaluated by comparing these data against results from our previously published studies that also used the light-damaged rat retina model. The analysis showed that treatment with tonabersat alone was better than probenecid alone at restoring retinal function in the light-damaged retina model. The results assist in the interpretation of the differential action of connexin hemichannel and pannexin channel therapeutics for potential treatment of retinal diseases.  相似文献   
9.
Production of novel porous material is a major target in current material science research due to its wide applications. As carbon nanotube (CNTs) is a one dimensional hollow structure it is also one of the promising materials in applications ranging from electronics to hydrogen storage medium. Catalytic chemical vapor deposition (CCVD) is a method whereby CNTs can be produced in large amount. Thus, in this work, we have synthesized CNTs via pyrolysis of acetylene using various supported transition-metal catalysts in a fixed-bed reactor. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to investigate the CNTs structure. The structures of nanotubes formed by acetylene pyrolysis were dependent on the catalysts used. It was found that alumina supported Ni/Fe catalyst inhibited the formation of CNTs growth while alumina supported Ni/Co catalyst gave high density of CNTs. However, nanotubes grown over alumina supported Ni/Fe catalyst were less dense due to the deactivation of the catalyst at the early stage of the pyrolysis process.  相似文献   
10.
The asymmetric Sharpless epoxidation of methyl 13S‐hydroxy‐9Z, 11E‐octadeca‐dienoate (13S‐HODE, 1 ) with tert‐butyl hydroperoxide (TBHP) catalysed by titanium tetraisopropoxide {Ti(iOPr)4} in the presence of L(+)‐diisopropyl tartrate (L‐DIPT) gave methyl 13S‐hydroxy‐11S, 12S‐epoxy‐9Z‐octadecenoate 2 (erythro isomer) in 84% diastereomeric excess (de). The epoxidation of 1 with TBHP catalysed by Ti(iOPr)4 in the presence of D(‐)‐DIPT yielded methyl 13S‐hydroxy‐11RR12R‐epoxy‐9Z‐octadecenoate (threo isomer) 3 in 76% de.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号