首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   11篇
化学工业   1篇
金属工艺   5篇
建筑科学   1篇
武器工业   12篇
无线电   1篇
冶金工业   1篇
  2024年   6篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
低温动态加载下三组元HTPB复合固体推进剂的失效判据   总被引:1,自引:0,他引:1  
强洪夫  王哲君  王广  耿标 《含能材料》2019,27(4):274-281
基于三组元端羟基聚丁二烯(HTPB)复合固体推进剂在不同热加速老化时间(0,32,74,98 d)和不同加载温度(-50,-40,-30,-20,25℃)以及不同应变率(0.40,4.00,14.29,42.86,63 s~(-1))条件下的单轴和准双轴拉伸力学性能实验以及细观损伤观测实验,分析了加载条件对推进剂初始弹性模量,强度和最大伸长率的影响规律,确定了单轴和准双轴拉伸加载下推进剂的失效判据。结果表明:动态单轴加载下推进剂易因拉伸应力作用而失效,且热老化后推进剂抵抗破坏的能力降低,拉伸时的最大伸长率可选为失效判据。其次,拉压强度比更能反映推进剂的动态单轴拉压差异性,室温和低温条件下,其数值分别接近于0.4和0.2~0.3。动态准双轴拉伸加载下,推进剂的最大伸长率较单轴加载时明显降低,降低的幅度随热老化时间增长而增大,且温度越低,降低越明显。未老化推进剂在准双轴拉伸加载下的最大伸长率约为单轴拉伸条件下数值的60%~85%,而老化后约为40%~60%。低温高应变率条件下,最大伸长率不受应力状态和应变率变化的影响。动态双轴拉伸条件下的最大伸长率可选为相应加载下推进剂的失效判据以及点火建压条件下战术导弹固体火箭发动机(SRM)药柱结构完整性分析的判据,其数值可结合主曲线和老化模型确定。  相似文献   
12.
不连续屈服行为是近α、β钛合金高温变形过程中出现的一种重要现象,对钛合金高温变形的力学特性有重要的影响,引起了材料研究者越来越广泛的关注。综合目前发生不连续屈服的钛合金高温变形研究现状,介绍了下屈服点前、后的流动曲线特性;分析了影响不连续屈服的主要因素、不连续屈服发生的相关机理;探讨了发生不连续屈服的钛合金高温变形机制和考虑不连续屈服现象时钛合金高温变形的本构模型构建;并在此基础上提出了当前研究中存在的不足和值得进一步研究的内容。  相似文献   
13.
一种新型亚稳β钛合金的热变形本构模型   总被引:1,自引:0,他引:1  
基于新型亚稳β钛合金Ti2448在温度范围为1023~1123 K,应变速率范围为63.000~0.001 s-1的等温热压缩流动应力曲线特征,采用经典的应力-位错密度关系式和动态再结晶动力学模型构建了完整描述亚稳β钛合金热变形流动应力与应变、应变速率和变形温度关系的本构模型.位错密度变化方程和Avrami方程被用来分别描述合金在高(≥1s-1)低(<1 s-1)应变速率下呈现的动态回复(DRV)和动态再结晶(DRX)两种不同的变形机制.最终通过应用全局优化求解非线性方程的新方法确定本构模型中的相关参数.根据本文所建模型得到的预测曲线和实验曲线吻合较好,能够有效预测Ti2448在热变形过程中的流动应力,为构建亚稳β钛合金热变形本构模型提供一种有效方法.  相似文献   
14.
基于三维在线表观模型的粒子滤波目标跟踪算法   总被引:5,自引:5,他引:0  
提出的基于三维在线表观模型的粒子滤波目 标跟踪算法,以目标的独立特征为基础,分别从空域和时域对目标进行描述,构建目 标的三维表观 模型,并通过多重线性空间理论表达目标表观随时间推移引起的变化,实现模型的在线增 量更新。采用 粒子滤波方法,对每个独立线索分别进行在线权重估计,通过多线索的融合实现动 目标的稳定跟踪。 三维在线表观模型和在线跟踪机制使跟踪模型对目标与背景的在线区分能力得到进一步增强 ,保证了算法 在目标表观变化时的跟踪稳定性。通过多种目标表观复杂变化的场景验证,均取得了良好 跟踪效果。  相似文献   
15.
从微观、细观、宏观尺度和跨尺度4个方面,对复合固体推进剂损伤行为的研究进展进行了梳理,重点综述了不同尺度下损伤的观测和表征方法、损伤阈值的确定方法、损伤演化模型的构建方法、损伤数值模拟方法及宏细观跨尺度分析方法,并在此基础上针对当前研究中存在的若干不足,展望了需进一步重点开展研究的方向:拓宽微观尺度上开展复合固体推进剂损伤行为数值模拟时考虑的影响因素的范围,并从多个方面加强与试验研究结论的验证;提高细观尺度上损伤观测试验的能力、损伤演化模型的表征水平和损伤数值模拟的计算精度;提高宏观尺度上损伤识别测试试验的检测精度、损伤阈值确定方法的精确性和损伤演化模型的预测能力;在形成微细宏观单一尺度上复合固体推进剂损伤行为研究的标准规范的基础上,进一步建立推进剂损伤行为跨尺度研究的理论方法体系。  相似文献   
16.
为了分析硝酸酯增塑聚醚(Nitrate Ester Plasticized Polyether, NEPE)推进剂在单轴准静态拉伸载荷下细观结构演化行为,基于Micro-CT对拉伸过程中NEPE推进剂开展了原位观测试验,对NEPE推进剂中高氯酸铵(AP)颗粒和初始缺陷的尺寸、形状等细观结构特征进行了表征,获取了单轴拉伸过程中推进剂细观结构的失效过程,并采用孔隙率对NEPE推进剂细观损伤的变化规律进行了定量分析,基于NEPE推进剂细观尺度上结构的演变规律解释了宏观力学性能变化的原因。结果表明,NEPE推进剂初始缺陷尺寸小、体积占比低,平均值为0.12%。单轴准静态拉伸过程中,NEPE推进剂的细观失效过程主要包括孔洞形核、生长与汇聚3个阶段;AP颗粒的体积分数虽然低,但是由于容易脱湿通常成为细观损伤的起点;当AP发生一定程度脱湿后,奥克托今(HMX)也会出现明显的脱湿,在分析NEPE推进剂细观失效问题时应当考虑HMX脱湿行为的影响。大量细观缺陷的形核与生长是NEPE推进剂宏观力学性能进入非线性段的原因,而细观缺陷的不断汇聚使得宏观应力增加落后于应变增加的现象越来越明显。加载过程中孔隙率呈现出先缓慢增加再急剧增加最后增加趋于平缓的变化趋势,孔隙率的变化规律不仅能够定量地反映NEPE推进剂细观缺陷的演化阶段,与NEPE推进剂宏观力学性能的变化也具有一定的对应关系。  相似文献   
17.
基于新型亚稳β钛合金Ti2448在温度1023~1123K、应变速率63~0.001s-1下的等温热压缩流动应力曲线特征,构建能够完整描述该合金流动应力与应变、应变速率、变形温度之间关系的本构模型。在此过程中,通过基于统一黏塑形理论改进双曲正弦函数,构建合金在高应变速率(≥1s-1)下发生动态回复(DRV)的模型;通过对标准的Avrami方程进行简化,表征了Ti2448在低应变率(1s-1)下发生的动态再结晶(DRX)软化机制。最终通过应用全局优化求解非线性方程的新方法确定模型中的相关参数。根据所建模型得到的预测曲线和实验曲线吻合得较好,能够有效预测Ti2448在热变形过程中的流动应力,为构建亚稳β钛合金热变形本构模型提供一种有效的方法。  相似文献   
18.
春日狂奔     
王哲君 《现代装饰》2014,(12):126-129
<正>如果德国是个真汉子的话,那么南德一定是他内心最柔软的那一面。相比瑞士的风光秀美,南德这一程除了自驾不限速带来风驰电掣般的乐趣外,更是让我感受到了传说中铁血德意志最柔情的那一面。如果德国是个真汉子的话,那么南德一定是他内心最柔软的那一面。为了感受南德的柔情,这一次我们规划了如下的行程:坐火车到慕尼黑,取了车以后奔向天鹅堡和富森小镇,继而沿着浪漫之路开到罗滕堡,改道去海德堡、宾根,游莱茵河谷最美的中段,最后抵达科隆。  相似文献   
19.
为研究固体推进剂的动态双轴压缩力学性能,需确定与试验机、试验夹具相适配且满足双轴变形特性要求的推进剂试验件最优构型.基于有限元数值仿真计算,获得了双轴压缩加载下八种不同构型的三组元端羟基聚丁二烯(HTPB)复合固体推进剂试验件变形的应力云图,并通过开展动态加载下对应推进剂试验件的力学性能试验对最优构型进行了验证.结果表明:小变形条件下(应变10%以内)所有试验件的应力云图均呈现整体均匀分布的特性,但长宽比大于1的试验件变形时不再满足平面应力状态的要求.选取平面应力平均值、平面应力离散度、整体应力稳定系数和应力集中系数作为推进剂试验件构型优化指标,对比分析得出边长为25 mm的正方体推进剂试验件为最优构型.最后,通过分析动态加载下双轴压缩试验获得的应力-应变曲线特性,验证了最优试验件构型设计的有效性.  相似文献   
20.
固体火箭发动机粘接界面参数识别与损伤破坏数值模拟   总被引:1,自引:0,他引:1  
为了研究固体火箭发动机粘接界面的损伤破坏过程,按照QJ2038.1A-2004制作了固体火箭发动机矩形粘接试件,对粘接试件进行了单向拉伸试验,获得了粘接试件的损伤破坏模式。根据粘接试件损伤破坏特点,建立了粘接试件的有限元数值模型,采用基于分步反演与Hooke-Jevees优化算法结合的反演方法,准确地获取了推进剂/衬层/绝热层界面混合模式下双线型内聚力模型的相关参数,将其应用于粘接试件拉伸试验损伤破坏过程的数值模拟中。研究结果表明:粘接试件主要的破坏形式为推进剂/衬层/绝热层界面处的脱粘;提出的反演识别方法能够较好地获取固体火箭发动机的界面相关参数,拉伸速度为2 mm·min-1时,固体火箭发动机粘接界面的初始模量、最大粘接强度、断裂能分别为0.86 MPa、0.63 MPa、3.13 kJ·m-2;推进剂/衬层/绝热层界面的损伤导致粘接试件的应力随应变增加的速率减慢,人工脱粘层尖端处界面的起裂,并且沿试件中央扩展,最终贯穿粘接试件是粘接试件主要损伤破坏模式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号