首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2238篇
  免费   111篇
  国内免费   7篇
电工技术   25篇
综合类   5篇
化学工业   541篇
金属工艺   68篇
机械仪表   86篇
建筑科学   35篇
矿业工程   3篇
能源动力   77篇
轻工业   142篇
水利工程   17篇
石油天然气   12篇
无线电   218篇
一般工业技术   511篇
冶金工业   223篇
原子能技术   18篇
自动化技术   375篇
  2024年   6篇
  2023年   35篇
  2022年   49篇
  2021年   90篇
  2020年   59篇
  2019年   66篇
  2018年   94篇
  2017年   77篇
  2016年   86篇
  2015年   60篇
  2014年   96篇
  2013年   183篇
  2012年   93篇
  2011年   109篇
  2010年   105篇
  2009年   96篇
  2008年   116篇
  2007年   84篇
  2006年   67篇
  2005年   53篇
  2004年   54篇
  2003年   41篇
  2002年   48篇
  2001年   34篇
  2000年   33篇
  1999年   33篇
  1998年   66篇
  1997年   42篇
  1996年   32篇
  1995年   20篇
  1994年   32篇
  1993年   23篇
  1992年   25篇
  1991年   14篇
  1990年   26篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   15篇
  1985年   19篇
  1984年   14篇
  1983年   22篇
  1982年   9篇
  1981年   14篇
  1980年   19篇
  1979年   9篇
  1978年   10篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
排序方式: 共有2356条查询结果,搜索用时 31 毫秒
51.
The Journal of Supercomputing - This study offers a neural network-based deep learning method for energy optimization modeling in electric vehicles (EV). The pre-processed driving cycle is...  相似文献   
52.
Context: Skin cancer represents the most growing types of cancer in human and ultraviolet radiation can be cited as one of the prime factor for its occurrence. Current therapy of skin cancer suffers from numerous side effects; for effective therapy, topical application of formulation of paclitaxel (PTX) can be considered as a novel approach.

Objective: The present study is an attempt to prepare formulation of solid lipid nanoparticles (SLN) of PTX for the effective treatment of various form of skin carcinoma.

Methods: The SLN were prepared by high-speed homogenization and ultrasonication method. The prepared SLN were characterized. The optimized PTX SLN were loaded in carbopol gel. The prepared gels were evaluated for its gelling properties and finally studied for in vivo anti-cancer efficacy and histopathological study.

Results: The particle size distribution was found to be in the range of 78.82–587.8?nm. The product yield (%) was found between 60% and 66% and showed a highest entrapment efficiency of 68.3%. The in vitro release of the drug from SLN dispersion was found to be biphasic with the initial burst effect, followed by slow release. SLN-loaded gel were subjected to permeability study and the results show steady-state flux (Jss), permeability coefficient (Kp), and enhancement ratio were significantly increased in SLN-loaded gel formulation as compared with PTX-loaded gel. The histopathological study clearly reveals the efficacy of the SLN-F3 3G in the treatment of skin cancer.

Conclusion: The experimental formulations show controlled release of PTX and thus expected to show reduce dose-related side effects.  相似文献   
53.
Tool offset is one the most significant parameters in joining of dissimilar materials by friction stir welding (FSW) process. An investigation is carried out on the effect of tool offset toward thermal history, material flow pattern, mechanical properties, welding force, and weld joint morphology. It was found that offsetting toward aluminum side along with a plasma-assisted heat source is an efficient approach to address one of the most important apprehensions in aluminum-copper solid-state welding process. The offset influences the amount of intermetallic at the joint interface and in-effect impacts on final strength and material flow behavior. The optimum and continuous layer of intermetallic produces the maximum weld joint strength. The specimen welded with optimum tool offset shows the highest strength using 55 A plasma current in hybrid friction stir welding process.  相似文献   
54.
The formation of all‐organic dual spin valves (DSVs) with three organic spin‐selective layers, that is, spin‐injection, spin‐detection, and an additional spin‐filtering layer at the intermediate, is reported. As spin‐selective layers, manganese‐ and cobalt phthalocyanines, which are well‐known single‐molecule magnets, are used in their immobilized forms, so that all‐organic DSVs can be prefabricated for characterization. The three spin‐selective layers have provided four configurations with at most two spin‐flip interfaces enforcing spin‐flipping at the two nonmagnetic organic spacer layers, for which copper phthalocyanine is used. Since a couple of the four configurations have exhibited similar resistivities, the degeneracy in the resistive‐states is broken through asymmetric spin‐injection and spin‐detection layers and also through asymmetric thickness of the nonmagnetic spacer layers. When both the spin‐flip interfaces are made operative independently, a 2‐bit logic with four distinct resistive states can be achieved.  相似文献   
55.
M. Naresh  S. Sikdar  J. Pal 《Strain》2023,59(5):e12439
A vibration data-based machine learning architecture is designed for structural health monitoring (SHM) of a steel plane frame structure. This architecture uses a Bag-of-Features algorithm that extracts the speeded-up robust features (SURF) from the time-frequency scalogram images of the registered vibration data. The discriminative image features are then quantised to a visual vocabulary using K-means clustering. Finally, a support vector machine (SVM) is trained to distinguish the undamaged and multiple damage cases of the frame structure based on the discriminative features. The potential of the machine learning architecture is tested for an unseen dataset that was not used in training as well as with some datasets from entirely new damages close to existing (i.e., trained) damage classes. The results are then compared with those obtained using three other combinations of features and learning algorithms—(i) histogram of oriented gradients (HOG) feature with SVM, (ii) SURF feature with k-nearest neighbours (KNN) and (iii) HOG feature with KNN. In order to examine the robustness of the approach, the study is further extended by considering environmental variabilities along with the localisation and quantification of damage. The experimental results show that the machine learning architecture can effectively classify the undamaged and different joint damage classes with high testing accuracy that indicates its SHM potential for such frame structures.  相似文献   
56.
Carbon fiber-reinforced polymers are one of the lightweight materials used in structural design due to their exceptional mechanical performances. The drilling operation is indispensable as it facilitates the assembling of various manufactured components. However, drilling of fibrous laminates is deemed difficult in comparison to the traditional metals because of the anisotropic and non-homogeneous nature. The present work addresses the parametric effect on the drilled hole delamination and further reduces it with an optimal combination of parameters for multi-objectives using different multi-criterion decision-making techniques. Initially, the response surface-based regression model of delamination as a function of three static inputs has been developed, further revised with induced thrust as well as mean torque for the improvisation of the prediction capability. Finally, for the overall improvement, a decision-making model has been used that includes grey relation analysis, technique for order performance by similarity to ideal solution, and VIšekriterijumsko Kompromisno Rangiranje method. The delamination was found to be minimum at a low drill point angle (100°), high spindle rotation (2150 min−1 ), and low feed rate (0.025 mm/rev) due to reduced thrust force. The mean absolute prediction error was significantly improved considering root mean square torque rather than axial thrust with process variables.  相似文献   
57.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.  相似文献   
58.
A commercial patient dose verification system utilizing non-invasive metal oxide semiconductor field effect transistor (MOSFET) dosimeters originally designed for radiotherapy applications has been evaluated for use at diagnostic energy levels. The system features multiple dosimeters that may be used to monitor entrance or exit skin dose and intracavity doses in phantoms in real time. We have characterized both the standard MOSFET dosimeter designed for radiotherapy dose verification and a newly developed "high sensitivity" MOSFET dosimeter designed for lower dose measurements. The sensitivity, linearity, angular response, post-exposure response, and physical characteristics were evaluated. The average sensitivity (free in air, including backscatter) of the radiotherapy MOSFET dosimeters ranged from 3.55 x 10(4) mV per C kg(-1) (9.2 mV R(-1)) to 4.87 x 10(4) mV per C kg(-1) (12.6 mV R(-1)) depending on the energy of the x-ray field. The sensitivity of the "high sensitivity" MOSFET dosimeters ranged from 1.15 x 10(5) mV per C kg(-1) (29.7 mV R(-1)) to 1.38 x 10(5) mV per C kg(-1) (35.7 mV R(-1)) depending on the energy of the x-ray field. The high sensitivity dosimeters demonstrated excellent linearity at high energies (90 and 120 kVp) and acceptable linearity at lower energies (60 kVp). The angular response was significant for free-in-air exposures, as illustrated by the sensitivity differences between the two sides of the dosimeter, but was excellent for measurements within a tissue equivalent cylinder. The post-exposure drift response is a complicated but reproducible function of time. Real-time monitoring requires little if any corrections for the post-exposure drift response. The MOSFET dosimeter system brings some unique capabilities to diagnostic radiology dosimetry including small size, real-time capabilities, nondestructive measurement, good linearity, and a predictable angular response.  相似文献   
59.
60.
This paper investigates the potential of support vector machines based regression approach to model the local scour around bridge piers using field data. A dataset of consisting of 232 pier scour measurements taken from BSDMS were used for this analysis. Results obtained by using radial basis function and polynomial kernel based Support vector regression were compared with four empirical relation as well as with a backpropagation neural network and generalized regression neural network. A total of 154 data were used for training different algorithms whereas remaining 78 data were used to test the created model. A coefficient of determination value of 0.897 (root mean square error=0.356) was achieved by radial basis kernel based support vector regression in comparison to 0.880 and 0.835 (root mean square error=0.388 and 0.438) by backpropagation neural and generalized regression neural network. Comparisons of results with four predictive equations suggest an improved performance by support vector regression. Results with dimensionless data using all three algorithms suggest a better performance by dimensional data with this dataset. Sensitivity analysis suggests the importance of depth of flow and pier width in predicting the scour depth when using support vector regression based modeling approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号