首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   96篇
  国内免费   20篇
电工技术   10篇
综合类   3篇
化学工业   432篇
金属工艺   44篇
机械仪表   35篇
建筑科学   36篇
矿业工程   6篇
能源动力   64篇
轻工业   40篇
水利工程   2篇
石油天然气   14篇
武器工业   2篇
无线电   115篇
一般工业技术   496篇
冶金工业   40篇
原子能技术   21篇
自动化技术   200篇
  2024年   1篇
  2023年   11篇
  2022年   22篇
  2021年   123篇
  2020年   56篇
  2019年   52篇
  2018年   57篇
  2017年   53篇
  2016年   48篇
  2015年   48篇
  2014年   71篇
  2013年   136篇
  2012年   132篇
  2011年   117篇
  2010年   88篇
  2009年   74篇
  2008年   75篇
  2007年   74篇
  2006年   52篇
  2005年   49篇
  2004年   45篇
  2003年   27篇
  2002年   34篇
  2001年   16篇
  2000年   21篇
  1999年   15篇
  1998年   16篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   5篇
  1993年   5篇
  1990年   1篇
  1989年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1560条查询结果,搜索用时 68 毫秒
51.
52.
Molecular docking has been extensively applied in virtual screening of small molecule libraries for lead identification and optimization. A necessary prerequisite for successful differentiation between active and non-active ligands is the accurate prediction of their binding affinities in the complex by use of docking scoring functions. However, many studies have shown rather poor correlations between docking scores and experimental binding affinities. Our work aimed to improve this correlation by implementing a multipose binding concept in the docking scoring scheme. Multipose binding, i.e., the property of certain protein-ligand complexes to exhibit different ligand binding modes, has been shown to occur in nature for a variety of molecules. We conducted a high-throughput docking study and implemented multipose binding in the scoring procedure by considering multiple docking solutions in binding affinity prediction. In general, improvement of the agreement between docking scores and experimental data was observed, and this was most pronounced in complexes with large and flexible ligands and high binding affinities. Further developments of the selection criteria for docking solutions for each individual complex are still necessary for a general utilization of the multipose binding concept for accurate binding affinity prediction by molecular docking.  相似文献   
53.
54.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
55.
Broadband dielectric spectroscopy (BDS) was applied to study polarization phenomena in alkaline silicate glasses, in particular, properties and structure of subsurface (anodic) polarized layers forming in poling with deposited film electrodes of different structures. A model of poled glasses which does not contradict experimental data is proposed. In accordance with the model, a poled glass is presented as two resistor-capacitor circuits in a series connection, one of which is the polarized layer and another is the rest of the sample. It is found that the electric properties of the layers essentially depend on the structure of the anodic electrode used in glass poling. It is also shown that the dielectric response of poled glass samples is mainly determined by the electric properties of the submicron polarized layers and this gives an opportunity to reveal specific properties of the layers rather than ones of the glass sample bulk. Revealed temperature dependence of DC conductivity of the polarized layers obeys Arrhenius's law, and determining activation energy does not depend on the electrode. Finally, it is noted that today above-mentioned information about polarized layers can be obtained only by BDS.  相似文献   
56.
International Journal of Computer Vision - We introduce a neural architecture for navigation in novel environments. Our proposed architecture learns to map from first-person views and plans a...  相似文献   
57.
Ultrafine-grain and high-strength Mg-5Li-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated.Results show that, during ARB process, the evolution of deformation mechanism of t Mg-5Li-1Al alloy is as follows: twinning deformation, shear deformation, forming macro shear zone, and finally dynamic recrystallization (DRX). The grain refining mechanism changes from twin DRX to rotation DRX. With the increase in ARB cycles, strength of the Mg-5Li-1Al sheets is enhanced, whilst elongation varies slightly. With the increase in rolling cycles, anisotropy of mechanical properties decreases. It is conclusive that strain hardening and grain refinement dominate the strengthening mechanism of Mg-5Li-1Al alloy.  相似文献   
58.
59.

The present work is devoted to the development of new structural composite material having the unique complex of properties for operating in ultrahard conditions that combine high temperatures, radiation, and aggressive environments. A new three-layer composite tube material based on vanadium alloy (V-4Ti-4Cr) protected by stainless steel (Fe-0.2C-13Cr) has been obtained by co-extrusion. Mechanism and kinetics of formation as well as structure, composition, and mechanical properties of “transition” area between vanadium alloy and stainless steel have been studied. The transition area (13- to 22-µm thick) of the diffusion interaction between vanadium alloy and steel was formed after co-extrusion. The microstructure in the transition area was rather complicated comprising different grain sizes in components, but having no defects or brittle phases. Tensile strength of the composite was an average 493 ± 22 MPa, and the elongation was 26 ± 3 pct. Annealing at 1073 K (800 °C) increased the thickness of transition area up to 1.2 times, homogenized microstructure, and slightly changed mechanical properties. Annealing at 1273 K (1000 °C) further increased the thickness of transition area and also lead to intensive grain growth in steel and sometimes to separation between composite components during tensile tests. Annealing at 1073 K (800 °C) is proposed as appropriate heat treatment after co-extrusion of composite providing balance between diffusion interaction thickness and microstructure and monolithic-like behavior of composite during tensile tests.

  相似文献   
60.
For safety issues related to the storage of gases (e.g. hydrogen) under high pressure, it is necessary to determine how the gas is released in the case of failure. In particular, there exist limited quantitative information on the near-field properties of gas jets, which are important for establishing proper decay laws in the far-field. Simulations of the near-field of highly underexpanded (high pressure) gas jets have been performed using Finite-Volume solver of the CAST3M code and validated using several sources available in the literature. The numerical model solves the 3D Compressible Multi-Component Navier–Stokes equations directly without relying on the compressibility-corrected turbulence models. It provides sufficiently fair mean predictions both in the case of one-component air–air and two-component helium-air releases. Possible initial conditions for the far-field simulations are suggested in terms of distance from the source, as well as the turbulence characteristics and gas-dynamic parameters at this location. In addition, these results are used to evaluate several notional nozzle concepts in order to determine the one physically consistent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号