首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   8篇
电工技术   2篇
化学工业   50篇
金属工艺   42篇
机械仪表   5篇
建筑科学   2篇
能源动力   8篇
轻工业   9篇
无线电   21篇
一般工业技术   42篇
冶金工业   38篇
自动化技术   11篇
  2023年   1篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   9篇
  2011年   19篇
  2010年   12篇
  2009年   15篇
  2008年   6篇
  2007年   14篇
  2006年   10篇
  2005年   11篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  2000年   7篇
  1999年   1篇
  1998年   14篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   10篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
  1930年   2篇
排序方式: 共有230条查询结果,搜索用时 31 毫秒
31.
Severe lattice distortion is a core effect in the design of multiprincipal element alloys with the aim to enhance yield strength, a key indicator in structural engineering. Yet, the yield strength values of medium‐ and high‐entropy alloys investigated so far do not substantially exceed those of conventional alloys owing to the insufficient utilization of lattice distortion. Here it is shown that a simple VCoNi equiatomic medium‐entropy alloy exhibits a near 1 GPa yield strength and good ductility, outperforming conventional solid‐solution alloys. It is demonstrated that a wide fluctuation of the atomic bond distances in such alloys, i.e., severe lattice distortion, improves both yield stress and its sensitivity to grain size. In addition, the dislocation‐mediated plasticity effectively enhances the strength–ductility relationship by generating nanosized dislocation substructures due to massive pinning. The results demonstrate that severe lattice distortion is a key property for identifying extra‐strong materials for structural engineering applications.  相似文献   
32.
In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.  相似文献   
33.
OR Spectrum - For online retailers with attended home delivery business models, the decisive factor for promising dynamic time slot pricing decisions is the quality of the opportunity cost...  相似文献   
34.
Since its first emergence in 2004, the high-entropy alloy (HEA) concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, this strategy is changed and renders such massive solid solutions metastable, to trigger spinodal decomposition for improving the alloys’ magnetic properties. The motivation for starting from a HEA for this approach is to provide the chemical degrees of freedom required to tailor spinodal behavior using multiple components. The key idea is to form Fe-Co enriched regions which have an expanded volume (relative to unconstrained Fe-Co), due to coherency constraints imposed by the surrounding HEA matrix. As demonstrated by theory and experiments, this leads to improved magnetic properties of the decomposed alloy relative to the original solid solution matrix. In a prototype magnetic FeCoNiMnCu HEA, it is shown that the modulated structures, achieved by spinodal decomposition, lead to an increase of the Curie temperature by 48% and a simultaneous increase of magnetization by 70% at ambient temperature as compared to the homogenized single-phase reference alloy. The findings thus open a pathway for the development of advanced functional HEAs.  相似文献   
35.
The Mn3N2 (010) surface has been studied using spin-polarized scanning tunneling microscopy at the atomic scale. The principle objective of this work is to elucidate the properties and potential of this technique to measure atomic-scale magnetic structures. The experimental approach involves the use of a combined molecular beam epitaxy/scanning tunneling microscopy system that allows the study of atomically clean magnetic surfaces. Several key findings have been obtained. First, both magnetic and non-magnetic atomic-scale information has been obtained in a single spin-polarized image. Magnetic modulation of the height profile having an antiferromagnetic super-period of c = 12.14 A (6 atomic rows) together with a non-magnetic superstructure having a period of c/2 = 6.07 A (3 atomic rows) was observed. Methods of separation of magnetic and non-magnetic profiles are presented. Second, bias voltage-dependent spin-polarized images show a reversal of the magnetic modulation at a particular voltage. This reversal is clearly due to a change in the sign of the magnetic term in the tunnel current. Since this term depends on both the tip's as well as the sample's magnetic local density of states, the reversal can be caused by either the sample or the tip. Third, the shape of the line profile was found to vary with the bias voltage, which is related to the energy-dependent spin contribution from the 2 chemically inequivalent Mn sites on the surface. Overall, the results shown here expand the application of the method of spin-polarized scanning tunneling microscopy to measure atomic-scale magnetic structures.  相似文献   
36.
Conjugated polymer-based organic solar cells   总被引:3,自引:0,他引:3  
  相似文献   
37.
Research and development towards high efficiency plastic solar cells have been accelerating in recent years. Polymer-based bulk heterojunction solar cells are offering an attractive and inexpensive concept for large scale production by solution processing as well as advantageous flexible and aesthetic form factors. The thin film nano-morphology of bulk-heterojunction solar cells has been shown to dramatically influence the photovoltaic performance of the devices. This article reviews the different methods used to control the film nano-morphology of bulk-heterojunction solar cells focussing on the chemical additives during solution processing. All power conversion efficiency limiting mechanisms of bulk-heterojunction solar cells are discussed in detail. It is shown, how the formation of optimal percolation pathways between donor and acceptor influences the photovoltaic device performance. It is explained how the film nano-morphology relates to light absorption, free charge carrier generation as well as charge transport to the electrodes.  相似文献   
38.
Abstract

Solid-solution strengthening in six Al–X binary systems is investigated using first-principle methods. The volumetric mismatch parameter and the solubility enthalpy per solute were calculated. We derive three rules for designing solid-solution strengthened alloys: (i) the solubility enthalpy per solute is related to the volumetric mismatch by a power law; (ii) for each annealing temperature, there exists an optimal solute–volume mismatch to achieve maximum strength; and (iii) the strengthening potential of high volumetric mismatch solutes is severely limited by their low solubility. Our results thus show that the thermodynamic properties of the system (here Al–X alloys) set clear upper bounds to the achievable strengthening effects owing to the reduced solubility with increasing volume mismatch.  相似文献   
39.
NAD+-dependent histone deacetylases (sirtuins) are enzymes that cleave acetyl groups from lysine residues in histones and other proteins. Potent selective sirtuin inhibitors are interesting tools for the investigation of the biological functions of these enzymes and may be future drugs for the treatment of cancer or neurodegenerative diseases. Herein we present the results from a protein-based virtual screen of a commercial database with subsequent biological testing of the most promising compounds. The combination of docking and in vitro experimental testing resulted in the identification of novel sirtuin inhibitors with thiobarbiturate structure. To rationalize the experimental results, free-energy calculations were carried out by molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations. A significant correlation between calculated binding free energies and measured Sirt2 inhibitory activities was observed. The analyses suggested a molecular basis for the interaction of the identified thiobarbiturate derivatives with human Sirt2. Based on the docking and MM-PBSA calculations we synthesized and tested five further thiobarbiturates. The MM-PBSA method correctly predicted the activity of the novel thiobarbiturates. The identified compounds will be used to further explore the therapeutic potential of sirtuin inhibitors.  相似文献   
40.
We present an electrochemical study of Au3Cu (0 0 1) single crystal surfaces in 0.1 mol dm−3 H2SO4 and 0.1 mol dm−3 H2SO4 + 0.1 mmol dm−3 HCl, and of Cu3Au (0 0 1) in 0.1 mol dm−3 H2SO4. The focus is on in situ scanning tunneling microscopy experiments. The changes of the surface morphology, which are time- and potential-dependent, have been observed, clearly resolving single atomic steps and mono-atomic islands and pits. Chloride additives enhance the surface diffusion and respective morphologies are observed earlier. All surfaces have shown considerable roughening already in the passive region far below the critical potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号