首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383287篇
  免费   32183篇
  国内免费   17583篇
电工技术   23697篇
技术理论   47篇
综合类   27798篇
化学工业   62510篇
金属工艺   22406篇
机械仪表   24789篇
建筑科学   29689篇
矿业工程   12758篇
能源动力   10573篇
轻工业   26343篇
水利工程   7666篇
石油天然气   24338篇
武器工业   3244篇
无线电   42285篇
一般工业技术   41985篇
冶金工业   19263篇
原子能技术   4032篇
自动化技术   49630篇
  2024年   1118篇
  2023年   5866篇
  2022年   9920篇
  2021年   15241篇
  2020年   11610篇
  2019年   9334篇
  2018年   10845篇
  2017年   12266篇
  2016年   11076篇
  2015年   15545篇
  2014年   19575篇
  2013年   23297篇
  2012年   25561篇
  2011年   28014篇
  2010年   24625篇
  2009年   23072篇
  2008年   22626篇
  2007年   21364篇
  2006年   21344篇
  2005年   18667篇
  2004年   12663篇
  2003年   11243篇
  2002年   10443篇
  2001年   9266篇
  2000年   9080篇
  1999年   9562篇
  1998年   7325篇
  1997年   6254篇
  1996年   5911篇
  1995年   4864篇
  1994年   3945篇
  1993年   2671篇
  1992年   2112篇
  1991年   1584篇
  1990年   1245篇
  1989年   1021篇
  1988年   833篇
  1987年   498篇
  1986年   408篇
  1985年   249篇
  1984年   195篇
  1983年   152篇
  1982年   133篇
  1981年   82篇
  1980年   105篇
  1979年   53篇
  1978年   24篇
  1977年   29篇
  1976年   32篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
磁声发射(MAE)是铁磁性材料磁化过程中产生的声发射信号,在构件应力检测和微观损伤检测中有着广泛的应用。针对MAE信号非稳态、复杂性、衰减性等特点,提出海鸥算法结合变分模态分解(SOA-VMD)的去噪方法,为克服海鸥算法求解过程中易陷入局部最优解问题,利用柯西变异算子产生随机迭代过程,使改进算法即柯西变异海欧算法(CVSOA)跳出早熟收敛。采用以幅值谱熵为适应度函数,优化VMD算法中分解模态个数K和二次惩戒因子α两个参数,将含噪声的MAE信号进行VMD分解重构。经仿真信号和实际检测信号分析表明,改进后的CVSOA-VMD算法全局寻优能力和去噪性能优于传统的SOA-VMD算法,降噪后的MAE信号特征值对于不同应力下均方根、偏斜度特征值的重复性更好,可靠性更高。  相似文献   
62.
Soybean oil hydrogenation alters the linolenic acid molecule to prevent the oil from becoming rancid, however, health reports have indicated trans-fat caused by hydrogenation, is not generally regarded as safe. Typical soybeans contain approximately 80 g kg−1 to 120 g kg−1 linolenic acid and 240 g kg−1 of oleic acid. In an effort to accommodate the need for high-quality oil, the United Soybean Board introduced an industry standard for a high oleic acid greater than 750 g kg−1 and linolenic acid less than 30 g kg−1 oil. By combing mutations in the soybean plant at four loci, FAD2-1A and FAD2-1B, oleate desaturase genes and FAD3A and FAD3C, linoleate desaturase genes, and seed oil will not require hydrogenation to prevent oxidation and produce high-quality oil. In 2017 and 2018, a study comparing four near-isogenic lines across multiple Tennessee locations was performed to identify agronomic traits associated with mutations in FAD3A and FAD3C loci, while holding FAD2-1A and FAD2-1B constant in the mutant (high oleic) state. Soybean lines were assessed for yield and oil quality based on mutations at FAD2-1 and FAD3 loci. Variations of wild-type and mutant genotypes were compared at FAD3A and FAD3C loci. Analysis using a generalized linear mixed model in SAS 9.4, indicated no yield drag or other negative agronomic traits associated with the high oleic and low linolenic acid genotype. All four mutations of fad2-1A, fad2-1B, fad3A, and fad3C were determined as necessary to produce a soybean with the new industry standard (>750 g kg−1 oleic and <30 g kg−1 linolenic acid) in a maturity group-IV-Late cultivar for Tennessee growers.  相似文献   
63.
长平煤矿机掘三队针对53031巷掘进期间工作面安装的SSJ-800型带式输送机经常出现跑偏打滑现象,导致输送机运行负荷大、煤矸运输效率低等,通过技术研究,对输送机安装了一套电液防打滑张紧装置.通过实际应用效果来看,该装置具有动作保护灵敏、故障率低、防打滑效果好等优点,输送机采用该装置后打滑事故率降低了7%,取得了显著应用效果.  相似文献   
64.
核桃不仅营养价值极高,而且核桃壳的药用价值也非常高,国内小企业和家庭在核桃硬壳脱壳加工环节,一般采用人工破壳取仁的方式,这种方式劳动强度大,人工成本高且不卫生;针对这个问题设计了一款小型的硬壳脱壳,壳仁分离分选的机器来提高生产效率,减少成本,提高收入。  相似文献   
65.
Recently, circularly polarized organic light-emitting diodes (CP-OLEDs) fabricated with thermally activated delayed fluorescence (TADF) emitters are developed rapidly. However, most devices are fabricated by vacuum deposition technology, and developing efficient solution-processed CP-OLEDs, especially nondoped devices, is still a challenge. Herein, a pair of triptycene-based enantiomers, (S,S)-/(R,R)-TpAc-TRZ, are synthesized. The novel chiral triptycene scaffold of enantiomers avoids their intermolecular π–π stacking, which is conducive to their aggregation-induced emission characteristics and high photoluminescence quantum yield of 85% in the solid state. Moreover, the triptycene-based enantiomers exhibit efficient TADF activities with a small singlet-triplet energy gap (ΔEST) of 0.03 eV and delayed fluorescence lifetime of 1.1 µs, as well as intense circularly polarized luminescence with dissymmetry factors (|gPL|) of about 1.9 × 10−3. The solution-processed nondoped CP-OLEDs based on (S,S)-/(R,R)-TpAc-TRZ not only display obvious circularly polarized electroluminescence signals with gEL values of +1.5 × 10−3 and −2.0 × 10−3, respectively, but also achieve high efficiencies with external quantum, current, and power efficiency up to 25.5%, 88.6 cd A−1, and 95.9 lm W−1, respectively.  相似文献   
66.
Improving the piezoelectric activity of lead zirconate titanate (PZT) ceramics is of great importance for practical applications. In this study, the influence of Pr3+ doping on the ferroelectric phase composition, microstructure, and electric properties on the A-site of (Pb1-1.5xPrx)(Zr0.52Ti0.48)O3 is extensively investigated. A dense and fine microstructural sample is obtained with the introduction of Pr3+. The results show that the morphotropic phase boundary (MPB) moves to the rhombohedral phase region. The rhombohedral and tetragonal phases exhibit an ideal coexistence in the 4 mol.% Pr3+ doped (PPZT4) samples. Lead vacancy and the reduction of the potential energy barrier are considered to be the key mechanisms for donor doping, which is upheld by the Pr3+ doping. Combining the I-E hysteresis loops with the P-E hysteresis loops, it becomes apparent that both contribution maximums of the domain switching and residual polarisation are in PPZT4. Moreover, the thermal aging resistance of PZT is improved by doping, and the temperature stability is optimised from 83% in PZT to 96% in PPZT4. Hence, an appropriate amount of Pr3+ doping can effectively improve the piezoelectric activity of PZT ceramics in the MPB area and optimise the performance stability of the material under application temperatures.  相似文献   
67.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
68.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
69.
Neoantigen vaccines and adoptive dendritic cell (DC) transfer are major clinical approaches to initiate personalized immunity in cancer patients. However, the immunization efficacy is largely limited by the in vivo trajectory including neoantigens’ access to resident DCs and DCs’ access to lymph nodes (LNs). Herein, an innovative strategy is proposed to improve personalized immunization through neoantigen-loaded nanovaccines synergized with adoptive DC transfer. It is found that it enables selective delivery of neoantigens to resident DCs and macrophages by coating cancer cell membranes onto neoantigen-loaded nanoparticles. In addition, the nanovaccines promote the secretion of chemokine C-C motif ligand 2 (CCL2), CCL3, and C-X-C motif ligand 10 from macrophages, thus potentiating the access of transferred DCs to LNs. This immunization strategy enables coordinated delivery of identified neoantigens and autologous tumor lysate-derived undefined antigens, leading to initiation of antitumor T cell immunity in a personalized manner. It significantly inhibits tumor growth in prophylactic and established mouse tumor models. The findings provide a new vision for potentiating adoptive cell transfer by nanovaccines, which may open the door to a transformative possibility for improving personalized immunization.  相似文献   
70.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号