首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9692篇
  免费   856篇
  国内免费   96篇
电工技术   189篇
综合类   45篇
化学工业   2619篇
金属工艺   221篇
机械仪表   414篇
建筑科学   365篇
矿业工程   19篇
能源动力   632篇
轻工业   933篇
水利工程   192篇
石油天然气   152篇
武器工业   5篇
无线电   1058篇
一般工业技术   1669篇
冶金工业   227篇
原子能技术   70篇
自动化技术   1834篇
  2024年   36篇
  2023年   195篇
  2022年   304篇
  2021年   621篇
  2020年   563篇
  2019年   703篇
  2018年   802篇
  2017年   762篇
  2016年   742篇
  2015年   438篇
  2014年   726篇
  2013年   1078篇
  2012年   686篇
  2011年   763篇
  2010年   504篇
  2009年   430篇
  2008年   255篇
  2007年   196篇
  2006年   159篇
  2005年   107篇
  2004年   104篇
  2003年   68篇
  2002年   60篇
  2001年   30篇
  2000年   26篇
  1999年   32篇
  1998年   26篇
  1997年   20篇
  1996年   24篇
  1995年   19篇
  1994年   13篇
  1993年   15篇
  1992年   10篇
  1991年   18篇
  1990年   17篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   13篇
  1983年   12篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
61.

One of the most important analysis in many hydrological and agricultural studies is to convert the daily rainfall data into sub-daily (hourly) because in many rainfall stations, only the daily rainfall data are available and for a comprehensive rainfall analysis, these data should be converted to sub-daily. Many experimental and analytical methods are available for this conversion but one of the simplest yet accurate ones has been proposed by the Indian Meteorological Department (IMD). Since the IMD method has shown low accuracy in some regions, in this study, the IMD method is modified to a single parameter equation, called Modified Indian Meteorological Department (MIMD) in order to improve the accuracy of the conversion. For this reason, the parameter is calibrated so that the maximum correlation between observed and estimated values is achieved. Five stations in different regions with different climatic conditions were selected so that the daily and sub-daily rainfall data were available in each of them. Then, the parameter of the MIMD method was derived for each station. The results were compared with both observed data and IMD method and it was shown that the mean correlation coefficient of MIMD and IMD methods were 0.9 and 0.73 respectively for 12-h rainfall depth which indicated that the accuracy of the MIMD method in estimation of sub-daily rainfall depths was significantly increased. Moreover, the results showed that the accuracy of the MIMD method decreases as rainfall duration decreases.

  相似文献   
62.

Combined simulation–optimization (CSO) schemes are common in the literature to solve different groundwater management problems, and CSO is particularly well-established in the coastal aquifer management literature. However, with a few exceptions, nearly all previous studies have employed the CSO approach to derive static groundwater management plans that remain unchanged during the entire management period, consequently overlooking the possible positive impacts of dynamic strategies. Dynamic strategies involve division of the planning time interval into several subintervals or periods, and adoption of revised decisions during each period based on the most recent knowledge of the groundwater system and its associated uncertainties. Problem structuring and computational challenges seem to be the main factors preventing the widespread implementation of dynamic strategies in groundwater applications. The objective of this study is to address these challenges by introducing a novel probabilistic Multiperiod CSO approach for dynamic groundwater management. This includes reformulation of the groundwater management problem so that it can be adapted to the multiperiod CSO approach, and subsequent employment of polynomial chaos expansion-based stochastic dynamic programming to obtain optimal dynamic strategies. The proposed approach is employed to provide sustainable solutions for a coastal aquifer storage and recovery facility in Oman, considering the effect of natural recharge uncertainty. It is revealed that the proposed dynamic approach results in an improved performance by taking advantage of system variations, allowing for increased groundwater abstraction, injection and hence monetary benefit compared to the commonly used static optimization approach.

  相似文献   
63.

Shear connectors play a prominent role in the design of steel-concrete composite systems. The behavior of shear connectors is generally determined through conducting push-out tests. However, these tests are costly and require plenty of time. As an alternative approach, soft computing (SC) can be used to eliminate the need for conducting push-out tests. This study aims to investigate the application of artificial intelligence (AI) techniques, as sub-branches of SC methods, in the behavior prediction of an innovative type of C-shaped shear connectors, called Tilted Angle Connectors. For this purpose, several push-out tests are conducted on these connectors and the required data for the AI models are collected. Then, an adaptive neuro-fuzzy inference system (ANFIS) is developed to identify the most influencing parameters on the shear strength of the tilted angle connectors. Totally, six different models are created based on the ANFIS results. Finally, AI techniques such as an artificial neural network (ANN), an extreme learning machine (ELM), and another ANFIS are employed to predict the shear strength of the connectors in each of the six models. The results of the paper show that slip is the most influential factor in the shear strength of tilted connectors and after that, the inclination angle is the most effective one. Moreover, it is deducted that considering only four parameters in the predictive models is enough to have a very accurate prediction. It is also demonstrated that ELM needs less time and it can reach slightly better performance indices than those of ANN and ANFIS.

  相似文献   
64.

Over the last decade, application of soft computing techniques has rapidly grown up in different scientific fields, especially in rock mechanics. One of these cases relates to indirect assessment of uniaxial compressive strength (UCS) of rock samples with different artificial intelligent-based methods. In fact, the main advantage of such systems is to readily remove some difficulties arising in direct assessment of UCS, such as time-consuming and costly UCS test procedure. This study puts an effort to propose four accurate and practical predictive models of UCS using artificial neural network (ANN), hybrid ANN with imperialism competitive algorithm (ICA–ANN), hybrid ANN with artificial bee colony (ABC–ANN) and genetic programming (GP) approaches. To reach the aim of the current study, an experimental database containing a total of 71 data sets was set up by performing a number of laboratory tests on the rock samples collected from a tunnel site in Malaysia. To construct the desired predictive models of UCS based on training and test patterns, a combination of several rock characteristics with the most influence on UCS has been used as input parameters, i.e. porosity (n), Schmidt hammer rebound number (R), p-wave velocity (Vp) and point load strength index (Is(50)). To evaluate and compare the prediction precision of the developed models, a series of statistical indices, such as root mean squared error (RMSE), determination coefficient (R2) and variance account for (VAF) are utilized. Based on the simulation results and the measured indices, it was observed that the proposed GP model with the training and test RMSE values 0.0726 and 0.0691, respectively, gives better performance as compared to the other proposed models with values of (0.0740 and 0.0885), (0.0785 and 0.0742), and (0.0746 and 0.0771) for ANN, ICA–ANN and ABC–ANN, respectively. Moreover, a parametric analysis is accomplished on the proposed GP model to further verify its generalization capability. Hence, this GP-based model can be considered as a new applicable equation to accurately estimate the uniaxial compressive strength of granite block samples.

  相似文献   
65.
Alzheimer's disease (AD) is the most prevalent form of dementia. Although fewer people, who suffer from AD are correctly and promptly diagnosed, due to a lack of knowledge of its cause and unavailability of treatment, AD is more manageable if the symptoms of mild cognitive impairment (MCI) are in an early stage. In recent years, computer‐aided diagnosis has been widely used for the diagnosis of AD. The main motive of this paper is to improve the classification and prediction accuracy of AD. In this paper, a novel approach is developed to classify MCI, normal control (NC), and AD using structural magnetic resonance imaging (sMRI) from the Alzheimer's disease Neuroimaging Initiative (ADNI) dataset (50 AD, 50 NC, 50 MCI subjects). FreeSurfer is used to process these MRI data and obtain cortical features such as volume, surface area, thickness, white matter (WM), and intrinsic curvature of the brain regions. These features are modified by normalizing each cortical region's features using the absolute maximum value of that region's features from all subjects in each group of MCI, NC, and AD independently. A total of 420 features are obtained. To address the curse of dimensionality, the obtained features are reduced to 30 features using a sequential feature selection technique. Three classifiers, namely the twin support vector machine (TSVM), least squares TSVM (LSTSVM), and robust energy‐based least squares TSVM (RELS‐TSVM), are used to evaluate the classification accuracy from the obtained features. Five‐fold and 10‐fold cross‐validation are used to validate the proposed method. Experimental results show an accuracy of 100% for the studied database. The proposed approach is innovative due to its higher classification accuracy compared to methods in the existing literature.  相似文献   
66.
Neural Computing and Applications - For the current paper, the technique of feed-forward neural network deep learning controller (FFNNDLC) for the nonlinear systems is proposed. The FFNNDLC...  相似文献   
67.
Neural Computing and Applications - This study introduces a neural network (NN) adaptive tracking controller-based reinforcement learning (RL) scheme for unknown nonlinear systems. First, an...  相似文献   
68.
In this paper, a direct self‐structured adaptive fuzzy control is introduced for the class of nonlinear systems with unknown dynamic models. Control is accomplished by an adaptive fuzzy system with a fixed number of rules and adaptive membership functions. The reference signal and state errors are used to tune the membership functions and update them instantaneously. The Lyapunov synthesis method is also used to guarantee the stability of the closed loop system. The proposed control scheme is applied to an inverted pendulum and a magnetic levitation system, and its effectiveness is shown via simulation. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   
69.
In this article, we consider the project critical path problem in an environment with hybrid uncertainty. In this environment, the duration of activities are considered as random fuzzy variables that have probability and fuzzy natures, simultaneously. To obtain a robust critical path with this kind of uncertainty a chance constraints programming model is used. This model is converted to a deterministic model in two stages. In the first stage, the uncertain model is converted to a model with interval parameters by alpha-cut method and distribution function concepts. In the second stage, the interval model is converted to a deterministic model by robust optimization and min-max regret criterion and ultimately a genetic algorithm with a proposed exact algorithm are applied to solve the final model. Finally, some numerical examples are given to show the efficiency of the solution procedure.  相似文献   
70.
In this paper a hybrid control strategy is presented based on Dynamic Matrix Control (DMC) and feedback linearization methods for designing a predictive controller of five bar linkage manipulator as a MIMO system (two inputs and two outputs). Analyzing the internal dynamic of robot shows the open loop system is unstable and non-minimum phase, so in order to apply the predictive controller, special modifications are needed. These modifications on non-minimum phase behavior are performed using feedback linearization procedure based on state space realization. The design objective is to track a desirable set point as well as time varying trajectories as a command references with globally asymptotical stabilization. The proposed controller is applied to nonlinear fully coupled model of the typical five bar linkage manipulator with non-minimum phase behavior. Simulation results show that the proposed controller has good efficiency. The step responses of system with and without feedback linearization process illustrated that the mentioned modification for stabilizing is performed properly. After applying the proposed predictive controller, the joint angle of robot tracks the reference input while another input acts as the disturbance and vice versa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号