首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8721篇
  免费   1032篇
  国内免费   545篇
电工技术   331篇
综合类   743篇
化学工业   741篇
金属工艺   770篇
机械仪表   735篇
建筑科学   100篇
矿业工程   36篇
能源动力   594篇
轻工业   25篇
水利工程   28篇
石油天然气   20篇
武器工业   303篇
无线电   1080篇
一般工业技术   1917篇
冶金工业   144篇
原子能技术   58篇
自动化技术   2673篇
  2024年   20篇
  2023年   281篇
  2022年   277篇
  2021年   319篇
  2020年   423篇
  2019年   292篇
  2018年   323篇
  2017年   451篇
  2016年   475篇
  2015年   516篇
  2014年   592篇
  2013年   751篇
  2012年   871篇
  2011年   817篇
  2010年   657篇
  2009年   710篇
  2008年   426篇
  2007年   596篇
  2006年   487篇
  2005年   209篇
  2004年   120篇
  2003年   93篇
  2002年   103篇
  2001年   89篇
  2000年   55篇
  1999年   71篇
  1998年   22篇
  1997年   18篇
  1996年   26篇
  1995年   26篇
  1994年   21篇
  1993年   27篇
  1992年   19篇
  1991年   22篇
  1990年   22篇
  1989年   22篇
  1988年   11篇
  1987年   2篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1981年   3篇
  1980年   3篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1969年   1篇
  1968年   2篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
Small object detection is challenging and far from satisfactory. Most general object detectors suffer from two critical issues with small objects: (1) Feature extractor based on classification network cannot express the characteristics of small objects reasonably due to insufficient appearance information of targets and a large amount of background interference around them. (2) The detector requires a much higher location accuracy for small objects than for general objects. This paper proposes an effective and efficient small object detector YOLSO to address the above problems. For feature representation, we analyze the drawbacks in previous backbones and present a Half-Space Shortcut(HSSC) module to build a background-aware backbone. Furthermore, a coarse-to-fine Feature Pyramid Enhancement(FPE) module is introduced for layer-wise aggregation at a granular level to enhance the semantic discriminability. For loss function, we propose an exponential L1 loss to promote the convergence of regression, and a focal IOU loss to focus on prime samples with high classification confidence and high IOU. Both of them significantly improves the location accuracy of small objects. The proposed YOLSO sets state-of-the-art results on two typical small object datasets, MOCOD and VeDAI, at a speed of over 200 FPS. In the meantime, it also outperforms the baseline YOLOv3 by a wide margin on the common COCO dataset.  相似文献   
2.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
3.
《Ceramics International》2022,48(12):16730-16736
Recently, all-inorganic cesium lead-halide perovskites have shown their promise for light emission applications, due to the excellent optical performance. Herein, we report that the initially nonphosphorescent undoped lead-halide Cs4PbBr6 single crystals (SCs) exhibit an ultralong phosphorescence emission under X-ray excitation at low temperatures. It is shown that the dramatic change has been taken place in radioluminescence spectra and the broad-band emission gradually appeared with the decrease of temperature. Below 210 K, the radioluminescence spectra can be deconvoluted into one narrow peak located at 530 nm and two broad peaks centered at 595 nm and 672 nm respectively. Subsequently, the time-dependent radioluminescence spectra in undoped lead-halide Cs4PbBr6 SCs were investigated. The ultralong phosphorescence emission can persist over 120 min at 70 K. We consider that ultralong phosphorescence originates from defect-related emission. To the best of our knowledge, our finding is the first time that undoped Cs4PbBr6 SCs exhibit the phosphorescence emission, which will offer a paradigm to motivate revolutionary applications on perovskite.  相似文献   
4.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
5.
6.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
7.
In practical applications of structural health monitoring technology, a large number of distributed sensors are usually adopted to monitor the big dimension structures and different kinds of damage. The monitored structures are usually divided into different sub-structures and monitored by different sensor sets. Under this situation, how to manage the distributed sensor set and fuse different methods to obtain a fast and accurate evaluation result is an important problem to be addressed deeply. In the paper, a multi-agent fusion and coordination system is presented to deal with the damage identification for the strain distribution and joint failure in the large structure. Firstly, the monitoring system is adopted to distributedly monitor two kinds of damages, and it self-judges whether the static load happens in the monitored sub-region, and focuses on the static load on the sub-region boundary to obtain the sensor network information with blackboard model. Then, the improved contract net protocol is used to dynamically distribute the damage evaluation module for monitoring two kinds of damage uninterruptedly. Lastly, a reliable assessment for the whole structure is given by combing various heterogeneous classifiers strengths with voting-based fusion. The proposed multi-agent system is illustrated through a large aerospace aluminum plate structure experiment. The result shows that the method can significantly improve the monitoring performance for the large-scale structure.  相似文献   
8.
Environmental problems brought by industry are attracting extensive attention so a comprehensive analysis of industrial environmental performance is increasingly important. However, the comparison of industrial sector efficiencies is complicated by the fact that the natural resources consumed and/or the pollutants discharged by each sector may differ. In this paper, we extend the DEA model to consider two-sided non-homogeneous problems, handling DMU sets that have non-homogeneity in both inputs and outputs. This is different from the previous researches which generally focus on regional data to avoid non-homogeneity. Today environmental reform and energy conservation in various industrial sectors are both parts of the basic state policy of China. The empirical results show that: (1) Sectors' efficiencies are still low and unbalanced. The Recycling and Disposal of Waste department achieves the best energy saving and emission reduction efficiency. (2) 38 sectors can be clustered into four groups and set new benchmark in each group. (3) The overall efficiency of 38 industrial sectors in China maintained a rising trend in five years. With this more realistic analysis of environmental efficiency, the Chinese government can make more informed decisions to realize sustainable industrial development.  相似文献   
9.
Yuan  Zhongchen  Yan  Li  Ma  Zongmin 《Requirements Engineering》2020,25(2):213-229
Requirements Engineering - In software reuse, the reuse of UML class diagram produced in design phase has received more attention due to the important influence on the following developing process....  相似文献   
10.
MC nylon-6-b-polyether amine copolymers were prepared with macro-initiator based on amino-terminated polyether amine functionalized with isocyanate via in-situ polymerization. It was found that the introduction of polyether amine delayed the polymerization process of caprolactam by increasing apparent activation energy and pre-exponential factor, resulting in the decrease of molecular weight of nylon-6. The motion of molecular chain of the copolymers was easy because of the decreased hydrogen bonds and weakened inter-molecular forces. The physical entanglement of molecular chains of the copolymers was significant and strong which increased the entanglement density. Only the nylon-6 phase crystallized in the copolymers and the crystal grain size, spherulite size and crystallinity of the copolymers decreased. A small amount of γ crystal formed at high polyether amine content. The copolymers presented obvious strain hardening behavior in stress-strain curves and the loss factor dramatically increased while the glass transition temperature and storage module decreased. The fracture surface of the copolymers became rough and presented hairy structure, indicating that the toughening mechanism of the copolymers corresponded to the multi-layer crack extension mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号