首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4425篇
  免费   199篇
  国内免费   139篇
电工技术   26篇
综合类   153篇
化学工业   769篇
金属工艺   165篇
机械仪表   61篇
建筑科学   465篇
矿业工程   314篇
能源动力   551篇
轻工业   78篇
水利工程   221篇
石油天然气   264篇
武器工业   2篇
无线电   149篇
一般工业技术   555篇
冶金工业   180篇
原子能技术   37篇
自动化技术   773篇
  2024年   3篇
  2023年   214篇
  2022年   154篇
  2021年   163篇
  2020年   237篇
  2019年   264篇
  2018年   92篇
  2017年   188篇
  2016年   246篇
  2015年   232篇
  2014年   263篇
  2013年   311篇
  2012年   180篇
  2011年   177篇
  2010年   193篇
  2009年   173篇
  2008年   63篇
  2007年   138篇
  2006年   169篇
  2005年   102篇
  2004年   75篇
  2003年   89篇
  2002年   109篇
  2001年   118篇
  2000年   69篇
  1999年   102篇
  1998年   46篇
  1997年   25篇
  1996年   43篇
  1995年   48篇
  1994年   39篇
  1993年   23篇
  1992年   21篇
  1991年   34篇
  1990年   31篇
  1989年   20篇
  1988年   48篇
  1987年   138篇
  1986年   101篇
  1985年   15篇
  1980年   1篇
  1979年   5篇
  1975年   1篇
排序方式: 共有4763条查询结果,搜索用时 312 毫秒
1.
2.
Crystalline quartz has long been identified as among the weakest of abundant crustal minerals. This weakness is particularly evident around the αβ phase inversion at 573°C, in which Si–O bonds undergo a displacive structural transformation from trigonal to hexagonal symmetry. Here we present data using indentation testing methodologies that highlight the precipitous extent of the transformational weakening. Although the indentations are localized over relatively small specimen contact areas, the data quantify the essential deformation and fracture properties of quartz in a predominantly (but not exclusively) compressive stress field, at temperatures and pressures pertinent to conditions in the earth's crust.  相似文献   
3.
Independent hydrogen production from petrochemical wastewater containing mono-ethylene glycol (MEG) via anaerobic sequencing batch reactor (ASBR) was extensively assessed under psychrophilic conditions (15–25 °C). A lab-scale ASBR was operated at pH of 5.50, and different organic loading rates (OLR) of 1.00, 1.67, 2.67, and 4.00 gCOD/L/d. The hydrogen yield (HY) progressed from 134.32 ± 10.79 to 189.09 ± 22.35 mL/gMEGinitial at increasing OLR from 1.00 to 4.00 gCOD/L/d. The maximum hydrogen content of 47.44 ± 3.60% was achieved at OLR of 4.0 gCOD/L/d, while methane content remained low (17.76 ± 1.27% at OLR of 1.0 gCOD/L/d). Kinetic studies using four different mathematical models were conducted to describe the ASBR performance. Furthermore, two batch-mode experiments were performed to optimize the nitrogen supplementation as a nutrient (C/N ratio), and assess the impact of salinity (as gNaCl/L) on hydrogen production. HY substantially dropped from 62.77 ± 4.09 to 6.02 ± 0.39 mL/gMEGinitial when C/N ratio was increased from 28.5 to 114.0. Besides, the results revealed that salinity up to 10.0 gNaCl/L has a relatively low inhibitory impact on hydrogen production. Eventually, the cost/benefit analysis showed that environmental and energy recovery revenues from ASBR were optimized at OLR of 4.0 gCOD/L/d (payback period of 7.13 yrs).  相似文献   
4.
Effective management of the risks associated with acid rock drainage (ARD) requires the ability to identify material with a potential to generate ARD reliably. With the increasing prevalence of quantitative mineralogy (Quantitative XRD, auto-SEM), opportunity exists to use mineralogy at all stages in ARD characterisation and prediction. This study uses a mineralogical approach across the head grade samples and the residues obtained under leach conditions of several common ARD characterisation tests (Acid Neutralising Capacity, Net Acid Generation), as well as the University of Cape Town (UCT) biokinetic test to evaluate the extent to which acid-neutralising minerals react. The results show the contribution of the carbonates to the acid neutralising capacity, as well as the partial dissolution of intermediate weathering silicate minerals such as chlorite and mica.  相似文献   
5.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
6.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
7.
Recently, quorum sensing (QS) inhibitors (QSIs) have been combined with antibiotics to enhance antibiofilm efficacy in vitro and in vivo. However, targeting QS signals alone is not enough to prevent bacterial infections. Drug resistance and recurrence of biofilms makes it difficult to eradicate. Herein, photodynamic therapy (PDT) is selected to unite QSIs and antibiotics. A synergistically antibiofilm system, which combines QSIs, antibiotics, and PDT based on hollow carbon nitride spheres (HCNSs) is envisaged. First, HCNS provides the multidrug delivering ability, enabling QSIs and antibiotics to be released in sequence. Subsequently, multistage releases sensitize bacteria effectively, potentiating the chemotherapeutic effects of the antibiotics. Finally, the integration of QSIs and PDT not only minimizes the possibility of drug resistance, but also overcomes the problem of limited mass and extension of PDT. Even after 48 h of incubation, the bacterial biofilm is obviously inhibited. And its biofilm disperse efficiency exceeds 48% (compared with QSI‐potentiated chemotherapy group) and 40% (compared with PDT group). Besides, the inhibition of the QS system influences phenotypes related to virulence factor production and surface hydrophobicity, which weaken biofilm invasion and formation. Eventually, this system is applied to disperse bacterial biofilm in vivo. Overall, PDT and QS modulation are devoted to eradicate drug resistance and recurrence of the biofilm.  相似文献   
8.
Silicon nitride (Si3N4) based ceramics were fabricated with β-SiAlON and Si3N4 powders synthesized by combustion synthesis method via power injection molding (PIM). In the PIM process, the solids loading for each material was first determined from the results of the torque rheometer experiment. The mixing process was repeated to produce the homogeneous feedstock, and homogeneity of feedstocks was evaluated by observing the shear viscosity with time at a constant shear rate. The rheological behavior of feedstocks was investigated using capillary rheometer. It found that both feedstocks have no problem in injection molding. The binder decomposition behavior was also investigated, and a wax-polymer binder system was nearly removed by the optimized solvent and thermal debinding processes. Thereafter, the debound samples were sintered at 1750 and 1800 °C for 4 h in nitrogen atmosphere. Regardless of sintering temperature, the relative density of higher than about 96% was achieved. When comparing mechanical properties including bending strength, Vickers hardness and fracture toughness, Si3N4 with 2 wt% Y2O3 and 5 wt% Al2O3 (Si3N4+2Y5A) had higher values than β-SiAlON with 4 wt% Y2O3 (β-SiAlON+4Y) regardless of sintering temperature. It was supported by observing the microstructures of the plasma-etched samples.  相似文献   
9.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
10.
Thermal barrier coatings (TBCs) produced by electron beam physical vapor deposition (EB-PVD) or plasma spray (PS) usually suffer from molten calcium-magnesium-alumino-silicate (CMAS) attack. In this study, columnar structured YSZ coatings were fabricated by plasma spray physical vapor deposition (PS-PVD). The coatings were CMAS-infiltrated at 1250?°C for short terms (1, 5, 30?min). The wetting and spreading dynamics of CMAS melt on the coating surface was in-situ investigated using a heating microscope. The results indicate that the spreading evolution of CMAS melt can be described in terms of two stages with varied time intervals and spreading velocities. Besides, the PS-PVD columnar coating (~100?μm thick) was fully penetrated by CMAS melt within 1?min. After the CMAS attack for 30?min, the original feathered-YSZ grains (tetragonal phase) in both PS-PVD and EB-PVD coatings were replaced by globular shaped monoclinic ZrO2 grains in the interaction regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号