首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34794篇
  免费   2890篇
  国内免费   606篇
电工技术   165篇
综合类   816篇
化学工业   16224篇
金属工艺   1739篇
机械仪表   302篇
建筑科学   220篇
矿业工程   470篇
能源动力   5123篇
轻工业   1862篇
水利工程   57篇
石油天然气   704篇
武器工业   52篇
无线电   2190篇
一般工业技术   6491篇
冶金工业   675篇
原子能技术   149篇
自动化技术   1051篇
  2024年   108篇
  2023年   2166篇
  2022年   1162篇
  2021年   1383篇
  2020年   2367篇
  2019年   1830篇
  2018年   1181篇
  2017年   1767篇
  2016年   1810篇
  2015年   2048篇
  2014年   2833篇
  2013年   2715篇
  2012年   2381篇
  2011年   2324篇
  2010年   1660篇
  2009年   1793篇
  2008年   775篇
  2007年   1736篇
  2006年   1432篇
  2005年   759篇
  2004年   421篇
  2003年   480篇
  2002年   600篇
  2001年   532篇
  2000年   277篇
  1999年   406篇
  1998年   208篇
  1997年   78篇
  1996年   177篇
  1995年   165篇
  1994年   93篇
  1993年   92篇
  1992年   94篇
  1991年   92篇
  1990年   105篇
  1989年   117篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1985年   2篇
  1984年   13篇
  1983年   7篇
  1982年   10篇
  1981年   5篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1951年   59篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The demand for high-performance non-precious-metal electrocatalysts to replace the noble metal-based catalysts for oxygen reduction reaction(ORR)is intensively increasing.Herein,single-atomic copper sites supported on N-doped three-dimensional hierarchically porous carbon catalyst(Cu1/NC)was prepared by coordination pyrolysis strategy.Remarkably,the Cu1/NC-900 catalyst not only exhibits excellent ORR performance with a half-wave potential of 0.894 V(vs.RHE)in alkaline media,outperforming those of commercial Pt/C(0.851 V)and Cu nanoparticles anchored on N-doped porous carbon(CuNPs/NC-900),but also demonstrates high stability and methanol tolerance.Moreover,the Cu1/NC-900 based Zn-air battery exhibits higher power density,rechargeability and cyclic stability than the one based on Pt/C.Both experimental and theoretical investigations demonstrated that the excellent performance of the as-obtained Cu1/NC-900 could be attributed to the synergistic effect between copper coordinated by three N atoms active sites and the neighbouring carbon defect,resulting in elevated Cu d-band centers of Cu atoms and facilitating intermediate desorption for ORR process.This study may lead towards the development of highly efficient non-noble metal catalysts for applications in electrochemical energy conversion.  相似文献   
102.
Microcystins (MCs) is a harmful toxin generated by blue-green algae in water, which has seriously threatened the ecological safety of water and human body. It is urgent to develop new catalysts and techniques for the degradation of MCs. A feasible electrostatic self-assembly method was carried out to synthesize BiVO4/g-C3N4 heterojunction photocatalyst with highly efficient photocatalytic ability, where BiVO4 nanoplates with exposed {010} facets anchored to the g-C3N4 ultrathin nanosheets. The morphology and microstructure of the heterojunction photocatalysts were identified by XRD, SEM, TEM, XPS, and BET. The g-C3N4 nanosheets have huge surface area over 200 m2/g and abundant mesoporous ranging from 2-20 nm, which provides tremendous contact area for BiVO4 nanoplates. Meanwhile, the introduction of BiVO4 led to red-shift of the absorption spectrum of photocatalyst, which was characterized by UV-vis diffuse reflection spectroscopy (DRS). Compared with pure BiVO4 and g-C3N4, the BiVO4/g-C3N4 heterojunction shows a drastically enhanced photocatalytic activity in degradation of microcystin-LR (MC-LR) in water. The MC-LR could be removed within 15 minutes under the optimal ratio of BiVO4/g-C3N4. The outstanding performance of the photocatalyst is attributed to synergetic effect of interface Z-scheme heterojunction and high active facets {010} of BiVO4 nanoplates, which provides an efficient transfer pathway to separate photoinduced carriers meanwhile endows the photocatalysts with strong redox ability.  相似文献   
103.
High ion selectivity and mechanical strength are critical properties for proton exchange membranes in vanadium redox flow batteries. In this work, a novel sulfonated poly(ether sulfone) hybrid membrane reinforced by core-shell structured nanocellulose (CNC-SPES) is prepared to obtain a robust and high-performance proton exchange membrane for vanadium redox flow batteries. Membrane morphology, proton conductivity, vanadium permeability and tensile strength are investigated. Single cell tests at a range of 40–140 mA cm−2 are carried out. The performance of the sulfonated poly(ether sulfone) membrane reinforced by pristine nanocellulose (NC-SPES) and Nafion® 212 membranes are also studied for comparison. The results show that, with the incorporation of silica-encapsulated nanocellulose, the membrane exhibits outstanding mechanical strength of 54.5 MPa and high energy efficiency above 82% at 100 mA cm−2, which is stable during 200 charge-discharge cycles.  相似文献   
104.
Thermal sprayed ceramic coatings have extensively been used in components to protect them against friction and wear. However, the poor lubricating ability severely limits their application. Herein, yttria-stabilized zirconia (YSZ)/MoS2 composite coatings were successfully fabricated on steel substrate with the combination of thermal spraying technology and hydrothermal reaction. Results show that the synthetic MoS2 powders are composed of numbers of ultra-thin sheets (about 7 ~ 8?nm), and the sheet has obvious lamellar structure. After vacuum impregnation and hydrothermal reaction, numbers of MoS2 powders, look like flowers, generate inside the plasma sprayed YSZ coating. Moreover, the growing point of the MoS2 flower is the intrinsic micro-pores of YSZ coating. The friction and wear tests under high vacuum environment indicate that the composite coating has an extremely long lifetime (>?100,000 cycles) and possesses a low friction coefficient less than 0.1, which is lower by about 0.15 times than that of YSZ coating. Meanwhile, the composite shows an extremely low wear rate (2.30?×?10?7 mm3 N?1 m?1) and causes slight wear damage to the counterpart. The excellent lubricant and wear-resistant ability are attributed to the formation of MoS2 transfer films and the ultra-smooth of the worn surfaces of hybrid coatings.  相似文献   
105.
采用等温溶解平衡法测定N,N′-二(2-羟丙基)哌嗪(HPP)?Na2SO4?H2O三元体系在273.15和298.15 K下的相平衡数据,采用湿渣法测定其平衡固相数据,绘制等温相图。用改进的单组分电解质Pitzer方程计算该体系中Na2SO4和Na2SO4?10H2O的溶解平衡常数,并对相平衡数据进行理论计算。结果表明,273.15 K时存在3个结晶区,298.15 K时存在4个结晶区。HPP的存在降低了Na2SO4和Na2SO4?10H2O的相转变温度,使298.15 K下的相图中存在Na2SO4的结晶区域,且273.15和298.15 K的相图中不存在纯HPP的结晶区域。理论计算与实验数据的均方根偏差不高于0.0290,表明相平衡数据计算值与实验值较吻合,证实了改进的单组分电解质Pitzer方程适用于该体系计算。  相似文献   
106.
Opening catalytically active sites in metal organic frameworks is an issue of fundamental importance for the development of effective and efficient catalysts. In this work, we first reported two metal metalloporphyrin–organic frameworks (MMPFs) with unoccupied pyridine groups as base catalysts. The reaction of Mn(II) and Co(II) with 5,10,15,20-tetrapyridylporphyrin produces two different metal metalloporphyrin–organic frameworks, {[(MnTPyP)]·H2O}n (MMPF-Mn) and [(CoTPyP)]n (MMPF-Co) (TPyP = 5,10,15,20-tetrapyridylporphyrin) under hydrothermal conditions. These two MMPFs have been fully characterized by single-crystal X-ray diffraction, powder XRD, elemental analysis and thermogravimetry (TG). MMPF-Mn displays a 3D network with a nbo topology, large and open hexagonal channels, MMPF-Co reveals a 1D single zigzag chain architecture. Interestingly, both MMPFs have a high thermal stability and opening basic pyridine group, which have been tested for the base catalyzed Knoevenagel condensation reaction. The catalytic study has demonstrated that MMPF-Mn catalysts having exposed pyridine group within 1D channel displayed an excellent performance for Knoevenagel condensation reaction. When MMPF-Mn was recycled four times, its catalytic activity remained with an inconspicuous decrease. We attribute MMPF-Mn showing a better performance than MMPF-Co to its active sites being aligned in extra-large cavity with an interior diameter of 20 Å.  相似文献   
107.
108.
Advanced protein-based nanomaterials and nanosystems (PNNS) have attracted considerable scientific interest in recent decades due to their potential in bio-applications. Nowadays, the constructed PNNS exhibit different properties for various special applications based on the characteristics of different proteins. Herein, in this review article, a systematic summary and discussion focusing on designing multi-functional PNNS are presented. The latest developments in unique synthesis strategies and detailed classification of PNNS are reviewed. The functions of proteins in PNNS for biomedical applications, such as targeting proteins, carriers, enzymes, and fluorescent indicators, are summarized. Finally, the challenges and forward-looking perspectives of PNNS research are provided.  相似文献   
109.
Ethanol steam reforming (ESR) is one of the potential processes to convert ethanol into valuable products. Hydrogen produced from ESR is considered as green energy for the future and can be an excellent alternative to fossil fuels with the aim of mitigating the greenhouse gas effect. The ESR process has been well studied, using transition metals as catalysts coupled with both acidic and basic oxides as supports. Among various reported transition metals, Ni is an inexpensive material with activity comparable to that of noble metals, showing promising ethanol conversion and hydrogen yields. Additionally, different promoters and supports were utilized to enhance the hydrogen yield and the catalyst stability. This review summarizes and discusses the influences of the supports and promoters of Ni-based catalysts on the ESR process.  相似文献   
110.
Sun  Xiuping  Wang  Lu  Li  Chuanchuan  Wang  Debao  Sikandar  Iqbal  Man  Ruxia  Tian  Fang  Qian  Yitai  Xu  Liqiang 《Nano Research》2021,14(12):4696-4703

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g−1 could be remained after 1,200 cycles at a current density of 100 mA·g−1. When applied as anode materials for SIBs, 300 mAh·g−1 could be retained after 300 cycles at 2 A·g−1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g−1, 120.3 mAh·g−1 could be preserved after 3,400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g−1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号