首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon is a low price and high capacity ancxje material for lithium-ion batteries.The yolk-shell structure can effectively accommodate Si expansion to improve stability.However,the limited rate performance of Si anodes can't meet people's growing demand for high power density.Herein,the phosphorus-doped yolk-shell Si@C materials(P-doped Si@C)were prepared through carbon coating on P-doped Si/SiOxmatrix to obtain high power and stable devices.Therefore,the as-prepared P-doped Si@C electrodes delivered a rapid increase in Coulombic efficiency from 74.4%to 99.6%after only 6 cycles,high capacity retention of-95%over 800 cycles at 4 A·g-1,and great rate capability(510 mAh·g-1at 35 A·g-1).As a result,P-doped Si@C anodes paired with commercial activated carbon and LiFePO4cathode to assemble lithium-ion capacitor(high power density of?61,080 W·kg-1at 20 A·g-1)and lithium-ion full cell(good rate performance with 68.3 mAh·g-1at 5 C),respectively.This work can provide an effective way tofurther improve power density and stability for energy storage devices.  相似文献   

2.
Herein,a two-dimensional(2D)interspace-confined synthetic strategy is developed for producing MoS2intercalated graphite(G-MoS2)hetero-layers composite through sulfuring the pre-synthesized stage-1 MoCI5-graphite intercalation compound(M0 CI5-GIC).The in situ grown MoS2nanosheets(3-7 layers)are evenly encapsulated in graphite layers with intimate interface thus forming layer-by-layer MoS2-intercalated graphite composite.In this structure,the unique merits of MoS2and graphite components are integrated,such as high capacity contribution of MoS2and the flexibility of graphite layers.Besides,the tight interfacial interaction between hetero-layers optimizes the potential of conductive graphite layers as matrix for MoS2.As a result,the G-MoS2exhibits a high reversible Li+storage of 344 mAh·g-1even at 10 A·g-1and a capacity of 539.9 mAh·g-1after 1,500 cycles at 5 A·g-1.As for potassium ion battery,G-MoS2delivers a reversible capacity of 377.0 mAh·g-1at 0.1 A·g-1and 141.2 mAh·g-1even at 2 A·g-1.Detailed experiments and density functional theory calculation demonstrate the existence of hetero-layers enhances the diffusion rates of Li+and K+.This graphite interspace-confined synthetic methodology would provide new ideas for preparing function-integrated materials in energy storage and conversion,catalysis or other fields.  相似文献   

3.
Hu  Junxian  Xie  Yangyang  Zheng  Jingqiang  Lai  Yanqing  Zhang  Zhian 《Nano Research》2020,13(10):2650-2657

Bismuth (Bi)-based electrode has aroused tremendous interest in potassium-ion batteries (PIBs) on account of its low cost, high electronic conductivity, low charge voltage and high theoretical capacity. However, the rapid capacity fading and poor lifespan induced by the normalized volume expansion (up to ~ 406%) and serious aggregation of Bi during cycling process hinder its application. Herein, bismuth molybdate (Bi2MoO6) microsphere assembled by 2D nanoplate units is successfully prepared by a facile solvothermal method and demonstrated as a promising anode for PIBs. The unique microsphere structure and the self-generated potassium molybdate (K-Mo-O species) during the electrochemical reactions can effectively suppress mechanical fracture of Bi-based anode originated from the volume variation during charge/discharge of the battery. As a result, the Bi2MoO6 microsphere without hybridizing with any other conductive carbon matrix shows superior electrochemical performance, which delivers a high reversible capacity of 121.7 mAh·g−1 at 100 mA·g−1 over 600 cycles. In addition, the assembled perylenetetracarboxylic dianhydride (PTCDA)//Bi2MoO6 full-cell coupled with PTCDA cathode demonstrates the potential application of Bi2MoO6 microsphere. Most importantly, the phase evolution of Bi2MoO6 microsphere during potassiation/depotassiation process is successfully deciphered by ex situ X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), and transmission electron microscopy (TEM) technologies, which reveals a combination mechanism of conversion reaction and alloying/dealloying reaction for Bi2MoO6 anode. Our findings not only open a new way to enhance the performance of Bi-based anode in PIBs, but also provide useful implications to other alloy-type anodes for secondary alkali-metal ion batteries.

  相似文献   

4.
Su  Dongqin  Huang  Man  Zhang  Junhao  Guo  Xingmei  Chen  Jiale  Xue  Yanchun  Yuan  Aihua  Kong  Qinghong 《Nano Research》2020,13(10):2862-2868

Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g−1 at 0.1 A·g−1 and 242.5 mAh·g−1 at 1 A·g−1 for 2,500 cycles with exceptional rate capability of 5 A·g−1 with reversible capacities of 201.2 mAh·g−1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.

  相似文献   

5.
Chen  Xiao  Chen  Chen  Zhang  Yu  Zhang  Xianfeng  Yang  Dong  Dong  Angang 《Nano Research》2019,12(3):631-636

Carbon coating has been a routine strategy for improving the performance of Si-based anode materials for lithium-ion batteries. The ability to tailor the thickness, homogeneity and graphitization degree of carbon-coating layers is essential for addressing issues that hamper the real applications of Si anodes. Herein, we report the construction of two-dimensional (2D) assemblies of interconnected Si@graphitic carbon yolk-shell nanoparticles (2D-Si@gC) from commercial Si powders by exploiting oleic acid (OA). The OA molecules act as both the surface-coating ligands for facilitating 2D nanoparticle assembly and the precursor for forming uniform and conformal graphitic shells as thin as 4 nm. The as-prepared 2D-Si@gC with rationally designed void space exhibits excellent rate capability and cycling stability when used as anode materials for lithium-ion batteries, delivering a capacity of 1,150 mAh·g−1 at an ultrahigh current density of 10 A·g−1 and maintaining a stabilized capacity of 1,275 mAh·g−1 after 200 cycles at 4 A·g−1. The formation of yolk-shell nanoparticles confines the deposition of solid electrolyte interphase (SEI) onto the outer carbon shell, while simultaneously providing sufficient space for volumetric expansion of Si nanoparticles. These attributes effectively mitigate the thickness variations of the entire electrode during repeated lithiation and delithiation, which combined with the unique 2D architecture and interconnected graphitic carbon shells of 2D-Si@gC contributes to its superior rate capability and cycling performance.

  相似文献   

6.
Li  Deping  Sun  Qing  Zhang  Yamin  Dai  Xinyue  Ji  Fengjun  Li  Kaikai  Yuan  Qunhui  Liu  Xingjun  Ci  Lijie 《Nano Research》2021,14(12):4502-4511

Carbon-based material has been regarded as one of the most promising electrode materials for potassium-ion batteries (PIBs). However, the battery performance based on reported porous carbon electrodes is still unsatisfactory, while the in-depth K-ion storage mechanism remains relatively ambiguous. Herein, we propose a facile “in situ self-template bubbling method for synthesizing interlayer-tuned hierarchically porous carbon with different metallic ions, which delivers superior K-ion storage performance, especially the high reversible capacity (360.6 mAh·g−1@0.05 A·g−1), excellent rate capability (158.6 mAh·g−1@10.0 A·g−1) and ultralong high-rate cycling stability (82.8% capacity retention after 2,000 cycles at 5.0 A·g−1). Theoretical simulation reveals the correlations between interlayer distance and K-ion diffusion kinetics. Experimentally, deliberately designed consecutive cyclic voltammetry (CV) measurements, ex situ Raman tests, galvanostatic intermittent titration technique (GITT) method decipher the origin of the excellent rate performance by disentangling the synergistic effect of interlayer and pore-structure engineering. Considering the facile preparation strategy, superior electrochemical performance and insightful mechanism investigations, this work may deepen the fundamental understandings of carbon-based PIBs and related energy storage devices like sodium-ion batteries, aluminum-ion batteries, electrochemical capacitors, and dual-ion batteries.

  相似文献   

7.
Miao  Yongqiang  Zhao  Xiaosen  Wang  Xin  Ma  Chenhui  Cheng  Lu  Chen  Gang  Yue  Huijuan  Wang  Lei  Zhang  Dong 《Nano Research》2020,13(11):3041-3047

A three-dimensional flower-like NiCo2S4 formed by two-dimensional nanosheets is synthesized by a facile hydrothermal method and utilized as the anode for sodium-ion batteries. Studies have shown that materials can achieve the best performance under the ether-based electrolyte system with voltage ranging from 0.3 to 3 V, which could effectively avoid the dissolution of polysulfides and over-discharge of the material. Here, sodium storage mechanism and charge compensation behaviors of this ternary metal sulfide are comprehensively investigated by ex situ X-ray diffraction. Moreover, ex situ Raman spectra, ex situ X-ray photoelectron spectroscopy and transmission electron microscopy measurements are used to related tests for the first time. Additionally, quantitative kinetic analysis unravels that sodium storage partially depends on the pseudocapacitance mechanism, resulting in good specific capacity and excellent rate performance. The initial discharge capacity is as high as 748 mAh·g−1 at a current density of 0.1 A·g−1 with the initial coulomb efficiency of 94%, and the capacity can still maintain at 580 mAh·g−1 with the Coulomb efficiency close to 100% after following 50 cycles. Moreover, by the long cycle test at a high current density of 2 A·g−1, the capacity can still reach at 376 mAh·g−1 after over 500 cycles.

  相似文献   

8.
Mixed transition metal oxides (MTMOs) have received intensive attention as promising anode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). In this work, we demonstrate a facile one-step water-bath method for the preparation of graphene oxide (GO) decorated Fe2(MoO4)3 (FMO) microflower composite (FMO/GO), in which the FMO is constructed by numerous nanosheets. The resulting FMO/GO exhibits excellent electrochemical performances in both LIBs and SIBs. As the anode material for LIBs, the FMO/GO delivers a high capacity of 1,220 mAh·g–1 at 200 mA·g–1 after 50 cycles and a capacity of 685 mAh·g–1 at a high current density of 10 A·g–1. As the anode material for SIBs, the FMO/GO shows an initial discharge capacity of 571 mAh·g–1 at 100 mA·g–1, maintaining a discharge capacity of 307 mAh·g–1 after 100 cycles. The promising performance is attributed to the good electrical transport from the intimate contact between FMO and graphene oxide. This work indicates that the FMO/GO composite is a promising anode for high-performance lithium and sodium storage.
  相似文献   

9.
Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources,low toxicity,easy synthesis and long cycle life.However,low Coulombic efficiency and limited specific capacity affect their applications.Here,cubic-phase TiP2O7is examined as anode materials,using in-situ/ex-situ characterization techniques.It is concluded that the redox reactions of Ti4+/Ti3+and Ti3+/Ti0consecutively occur during the discharge/charge processes,both of which are highly reversible.These reactions make the specific capacity of TiP2O7even higher than the case of TiO2 that only contains a simple anion,02-.Interestingly,Ti species participate only one of the redox reactions,due to the remarkable difference in local structures related to the sodiation process.The stable discharge/charge products in TiP2O7reduce the side reactions and improve the Coulombic efficiency as compared to T i02.These features make it a promising Ti-based anode for sodium ion batteries.Therefore,TiP2O7@C microflowers exhibit excellent electrochemical performances,?109 mAh·g-1after 10,000 cycles at 2 A·g-1,or 95.2 mAh·g-1at 10 A·g-1.The results demonstrate new opportunities for advanced Ti-based anodes in sodium ion batteries.  相似文献   

10.
Dong  Yuru  Zhu  Zhengju  Hu  Yanjie  He  Guanjie  Sun  Yue  Cheng  Qilin  Parkin  Ivan P.  Jiang  Hao 《Nano Research》2021,14(1):74-80

The low specific capacity and sluggish electrochemical reaction kinetics greatly block the development of sodium-ion batteries (SIBs). New high-performance electrode materials will enhance development and are urgently required for SIBs. Herein, we report the preparation of supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays on carbon cloth (denoted as V-MoS2+x/CC). The bridge-sulfur in MoS2 has been created as a new active site for greater Na+ storage. The vanadium doping increases the density of carriers and facilitates accelerated electron transfer. The synergistic dual-doping effects endow the V-MoS2+x/CC anodes with high sodium storage performance. The optimized V-MoS2.49/CC gives superhigh capacities of 370 and 214 mAh·g−1 at 0.1 and 10 A·g−1 within 0.4−3.0 V, respectively. After cycling 3,000 times at 2 A·g−1, almost 83% of the reversible capacity is maintained. The findings indicate that the electrochemical performances of metal sulfides can be further improved by edge-engineering and lattice-doping co-modification concept.

  相似文献   

11.
Wang  Xianshu  Pan  Zhenghui  Wu  Yang  Ding  Xiaoyu  Hong  Xujia  Xu  Guoguang  Liu  Meinan  Zhang  Yuegang  Li  Weishan 《Nano Research》2019,12(3):525-529

Lithium metal anode for batteries has attracted extensive attentions, but its application is restricted by the hazardous dendritic Li growth and dead Li formation. To address these issues, a novel Li anode is developed by infiltrating molten Li metal into conductive carbon cloth decorated with zinc oxide arrays. In carbonate-based electrolyte, the symmetric cell shows no short circuit over 1,500 h at 1 mA·cm−2, and stable voltage profiles at 3 mA·cm−2 for ∼ 300 h cycling. A low overpotential of ∼ 243 mV over 350 cycles at a high current density of 10 mA·cm−2 is achieved, compared to the seriously fluctuated voltage and fast short circuit in the cell using bare Li metal. Meanwhile, the asymmetric cell withstands 1,000 cycles at 10 C (1 C = 167 mAh·g−1) compared to the 210 cycles for the cell using bare Li anode. The excellent performance is attributed to the well-regulated Li plating/stripping driven from the formation of LiZn alloy on the wavy carbon fibers, resulting in the suppression of dendrite growth and pulverization of the Li electrode during cycling.

  相似文献   

12.
Wei  Xiujuan  Tang  Chunjuan  An  Qinyou  Yan  Mengyu  Wang  Xuanpeng  Hu  Ping  Cai  Xinyin  Mai  Liqiang 《Nano Research》2017,10(9):3202-3211

Sodium-ion batteries (SIBs) have great promise for sustainable and economical energy-storage applications. Nevertheless, it is a major challenge to develop anode materials with high capacity, high rate capability, and excellent cycling stability for them. In this study, FeSe2 clusters consisting of nanorods were synthesized by a facile hydrothermal method, and their sodium-storage properties were investigated with different electrolytes. The FeSe2 clusters delivered high electrochemical performance with an ether-based electrolyte in a voltage range of 0.5–2.9 V. A high discharge capacity of 515 mAh·g–1 was obtained after 400 cycles at 1 A·g–1, with a high initial columbic efficiency of 97.4%. Even at an ultrahigh rate of 35 A·g–1, a specific capacity of 128 mAh·g–1 was achieved. Using calculations, we revealed that the pseudocapacitance significantly contributed to the sodium-ion storage, especially at high current rates, leading to a high rate capability. The high comprehensive performance of the FeSe2 clusters makes them a promising anode material for SIBs.

  相似文献   

13.
Sun  Tianjiang  Liu  Chang  Wang  Jiayue  Nian  Qingshun  Feng  Yazhi  Zhang  Yan  Tao  Zhanliang  Chen  Jun 《Nano Research》2020,13(3):676-683

Aqueous rechargeable batteries are a possible strategy for large-scale energy storage systems. However, limited choices of anode materials restrict their further application. Here we report phenazine (PNZ) as stable anode materials in different alkali-ion (Li+, Na+, K+) electrolyte. A novel full cell is assembled by phenazine anode, Na0.44MnO2 cathode and 10 M NaOH electrolyte to further explore the electrochemical performance of phenazine anode. This battery is able to achieve high capacity (176.7 mAh·g?1 at 4 C (1.2·Ag?1)), ultralong cycling life (capacity retention of 80% after 13,000 cycles at 4 C), and excellent rate capacity (92 mAh·g?1 at 100 C (30 A·g?1)). The reaction mechanism of PNZ during charge—discharge process is demonstrated by in situ Raman spectroscopy, in situ Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Furthermore, the system is able to successfully operate at wide temperature range from ?20 to 70 °C and achieves remarkable electrochemical performance.

  相似文献   

14.

Graphene nanosheets are a promising scaffold to accommodate S for achieving high performance Li/S battery. Nanosheet activation is used as a viable strategy to induce a micropore system and further improve the battery performance. Accordingly, chemical activation methods dominate despite the need of multiple stages, which slow down the process in addition to making them tiresome. Here, a three-dimensional (3D) N-doped graphene specimen was physically activated with CO2, a clean and single step process, and used for the preparation of a sulfur composite (A-3DNG/S). The A-3DNG/S composite exhibited outstanding electrochemical properties such as an excellent rate capability (1,000 mAh·g−1 at 2C), high reversible capacity and cycling stability (average capacity ~ 800 mAh·g−1 at 1C after 200 cycles), values which exceed those measured in chemically activated graphene. Therefore, these results support the use of physical activation as a simple and efficient alternative to improve the performance of carbons as an S host for high-performance Li-S batteries.

  相似文献   

15.
Jia  Dedong  Zheng  Kun  Song  Ming  Tan  Hua  Zhang  Aitang  Wang  Lihua  Yue  Lijun  Li  Da  Li  Chenwei  Liu  Jingquan 《Nano Research》2020,13(1):215-224

Aqueous Zinc-ion batteries (ZIBs), using zinc negative electrode and aqueous electrolyte, have attracted great attention in energy storage field due to the reliable safety and low-cost. A composite material comprised of VO2·0.2H2O nanocuboids anchored on graphene sheets (VOG) is synthesized through a facile and efficient microwave-assisted solvothermal strategy and is used as aqueous ZIBs cathode material. Owing to the synergistic effects between the high conductivity of graphene sheets and the desirable structural features of VO2·0.2H2O nanocuboids, the VOG electrode has excellent electronic and ionic transport ability, resulting in superior Zn ions storage performance. The Zn/VOG system delivers ultrahigh specific capacity of 423 mAh·g−1 at 0.25 A·g−1 and exhibits good cycling stability of up to 1,000 cycles at 8 A·g−1 with 87% capacity retention. Systematical structural and elemental characterizations confirm that the interlayer space of VO2·0.2H2O nanocuboids can adapt to the reversible Zn ions insertion/extraction. The as-prepared VOG composite is a promising cathode material with remarkable electrochemical performance for low-cost and safe aqueous rechargeable ZIBs.

  相似文献   

16.
Zeng  Kun  Li  Tong  Qin  Xianying  Liang  Gemeng  Zhang  Lihan  Liu  Qi  Li  Baohua  Kang  Feiyu 《Nano Research》2020,13(11):2987-2993

Porous Si can be synthesized from diverse silica (SiO2) via magnesiothermic reduction technology and widely employed as potential anode material in lithium ion batteries. However, concerns regarding the influence of residual silicon oxide (SiOx) component on resulted Si anode after reduction are still lacked. In this work, we intentionally fabricate a cauliflower-like silicon/silicon oxide (CF-Si/SiOx) particles from highly porous SiO2 spheres through insufficient magnesiothermic reduction, where residual SiOx component and internal space play an important role in preventing the structural deformation of secondary bulk and restraining the expansion of Si phase. Moreover, the hierarchically structured CF-Si/SiOx exhibits uniformly-dispersed channels, which can improve ion transport and accommodate large volume expansion, simultaneously. As a result, the CF-Si/SiOx-700 anode shows excellent electrochemical performance with a specific capacity of ~1,400 mA·h·g−1 and a capacity retention of 98% after 100 cycles at the current of 0.2 A·g−1.

  相似文献   

17.
Zhao  Jianghui  Kang  Tuo  Chu  Yanli  Chen  Peng  Jin  Feng  Shen  Yanbin  Chen  Liwei 《Nano Research》2019,12(6):1355-1360

Organic-based electrode materials for lithium-ion batteries (LIBs) are promising due to their high theoretical capacity, structure versatility and environmental benignity. However, the poor intrinsic electric conductivity of most polymers results in slow reaction kinetics and hinders their application as electrode materials for LIBs. A binder-free self-supporting organic electrode with excellent redox kinetics is herein demonstrated via in situ polymerization of a uniform thin polyimide (PI) layer on a porous and highly conductive carbonized nanofiber (CNF) framework. The PI active material in the porous PI@CNF film has large physical contact area with both the CNF and the electrolyte thus obtains superior electronic and ionic conduction. As a result, the PI@CNF cathode exhibits a discharge capacity of 170 mAh·g−1 at 1 C (175 mA·g−1), remarkable rate-performance (70.5% of 0.5 C capacity can be obtained at a 100 C discharge rate), and superior cycling stability with 81.3% capacity retention after 1,000 cycles at 1 C. Last but not least, a four-electron transfer redox process of the PI polymer was realized for the first time thanks to the excellent redox kinetics of the PI@CNF electrode, showing a discharge capacity exceeding 300 mAh·g−1 at a current of 175 mA·g−1.

  相似文献   

18.
Scrupulous design and fabrication of advanced electrode materials are vital for developing high-performance sodium ion batteries. Herein, we report a facile one-step hydrothermal strategy for construction of a C-MoSe2/rGO composite with both high porosity and large surface area. Double modification of MoSe2 nanosheets is realized in this composite by introducing a reduced graphene oxide (rGO) skeleton and outer carbon protective layer. The MoSe2 nanosheets are well wrapped by a carbon layer and also strongly anchored on the interconnected rGO network. As an anode in sodium ion batteries, the designed C-MoSe2/rGO composite delivers noticeably enhanced sodium ion storage, with a high specific capacity of 445 mAh·g-1 at 200 mA·g-1 after 350 cycles, and 228 mAh·g-1 even at 4 A·g-1; these values are much better than those of C-MoSe2 nanosheets (258 mAh·g-1 at 200 mA·g-1 and 75 mAh·g-1 at 4 A·g-1). Additionally, the sodium ion storage mechanism is investigated well using ex situ X-ray diffraction and transmission electron microscopy methods. Our proposed electrode design protocol and sodium storage mechanism may pave the way for the fabrication of other high-performance metal diselenide anodes for electrochemical energy storage.
  相似文献   

19.
Sodium-ion batteries (SIBs) have been increasingly attracting attention as a sustainable alternative to lithium-ion batteries for scalable energy storage. The key to advanced SIBs relies heavily upon the development of reliable anodes. In this respect, Bi2S3 has been extensively investigated because of its high capacity, tailorable morphology, and low cost. However, the common practices of incorporating carbon species to enhance the electrical conductivity and accommodate the volume change of Bi2S3 anodes so as to boost their durability for Na storage have met with limited success. Herein, we report a simple method to realize the encapsulation of Bi2S3 nanorods within three-dimensional, nitrogen-doped graphene (3DNG) frameworks, targeting flexible and active composite anodes for SIBs. The Bi2S3/3DNG composites displayed outstanding Na storage behavior with a high reversible capacity (649 mAh·g–1 at 62.5 mA·g–1) and favorable durability (307 and 200 mAh·g–1 after 100 cycles at 125 and 312.5 mA·g–1, respectively). In-depth characterization by in situ X-ray diffraction revealed that the intriguing Na storage process of Bi2S3 was based upon a reversible reaction. Furthermore, a full, flexible SIB cell with Na0.4MnO2 cathode and as-prepared composite anode was successfully assembled, and holds a great promise for next-generation, wearable energy storage applications.
  相似文献   

20.
Constructing graphene-based heterostructures with large interfacial area is an efficient approach to enhance the electrochemical performance of supercapacitors but remains great challenges in their synthesis.Herein,a novel ultra-small amorphous Fe2O3nanodots/graphene heterostructure(a-Fe2O3NDs/RGO)aerogel was facilely synthesized via excessive metal-ion-induced self-assembly and subsequent calcination route using Prussian blue/graphene oxide(PB/GO)composite aerogel as precursors.The deliberately designed a-Fe2O3NDs/RGO heterostructure offers a highly interconnected porous conductive network,large heterostructure interfacial area,and plenty of accessible active sites,greatly facilitating the electron transfer,electrolyte diffusion,and pseudocapacitive reactions.The obtained a-Fe2O3NDs/RGO aerogel could be used as flexible free-standing electrodes after mechanical compression,which exhibited a significantly enhanced specific capacitance of 347.4 F·g-1at 1 A·g-1,extraordinary rate capability of 184 F·g-1at 10 A·g-1,and decent cycling stability.With the as-prepared a-Fe2O3NDs/RGO as negative electrodes and the Co3O4NDs/RGO as positive electrodes,an all-solid-state asymmetric supercapacitor(a-Fe2O3NDs/RGO//Co3O4NDs/RGO asymmetric supercapacitor(ASC))was assembled,which delivered a high specific capacitance of 69.1 F·g-1at 1 A·g-1and an impressive energy density of 21.6 W·h·k·g-1at 750 W·k·g-1,as well as good cycling stability with a capacity retention of 94.3%after 5,000 cycles.This work provides a promising avenue to design high-performance graphene-based composite electrodes and profound inspiration for developing advanced flexible energy-storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号