首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2778篇
  免费   6篇
  国内免费   23篇
电工技术   19篇
综合类   8篇
化学工业   549篇
金属工艺   561篇
机械仪表   38篇
建筑科学   7篇
矿业工程   7篇
能源动力   232篇
轻工业   11篇
水利工程   3篇
石油天然气   2篇
无线电   109篇
一般工业技术   904篇
冶金工业   210篇
原子能技术   61篇
自动化技术   86篇
  2024年   1篇
  2023年   24篇
  2022年   50篇
  2021年   29篇
  2020年   62篇
  2019年   75篇
  2018年   14篇
  2017年   86篇
  2016年   67篇
  2015年   74篇
  2014年   155篇
  2013年   157篇
  2012年   172篇
  2011年   217篇
  2010年   167篇
  2009年   209篇
  2008年   160篇
  2007年   150篇
  2006年   150篇
  2005年   130篇
  2004年   90篇
  2003年   132篇
  2002年   97篇
  2001年   95篇
  2000年   69篇
  1999年   76篇
  1998年   23篇
  1997年   6篇
  1996年   3篇
  1995年   12篇
  1994年   13篇
  1993年   16篇
  1992年   8篇
  1991年   13篇
  1990年   2篇
  1989年   3篇
排序方式: 共有2807条查询结果,搜索用时 234 毫秒
991.
Electrochemical treatments are expected to be effective for the coating of calcium phosphate ceramics to a titanium substrate. In the present study, two types of chronoamperometry with a step potential and a cyclic wave potential at low voltage (up to 2.0 V) and low current density were performed in Hanks’ solution to modify the surface characteristics of titanium. Titanium oxide film formed by self-passivation, that formed as reconstructed film during electrochemical treatments, and a calcium phosphate layer precipitated through treatments were characterised by X-ray photoelectron spectroscopy. The thickness and compositions of the surface films and layers were quantified from the XPS results. Calcium phosphate formation during immersion in Hanks’ solution for 1.0 Ms was evaluated by scanning electron microscopy with energy-dispersive X-ray spectrometry. The results confirmed that the electrolytic treatments in this study were effective to accelerate calcium phosphate formation on titanium in Hanks’ solution in spite of their lower voltage than conventional methods. The results also suggested that the hydroxyl group in the surface oxide film might contribute to the formation of calcium phosphate. This technique is a promising process for the treatment of thin titanium materials.  相似文献   
992.
Domain structures and magnetic flux distributions in Mn-Zn and Ni-Zn ferrites are investigated by in situ observations with Lorentz microscopy and electron holography. In situ Lorentz microscopic observation with the magnetic field applied reveals that the domain walls in Mn-Zn ferrite move easily across the grain boundary. On the other hand, each grain of Ni-Zn ferrite is magnetized by domain wall motion inside the grain. By taking a series of holograms with adjustment of the optical axis and astigmatism while the magnetic field is applied, we succeeded in observing the change in magnetic flux distribution quantitatively. Eventually, it is clarified that magnetization rotation does not take place in the magnetization process of Ni-Zn ferrite. The domain wall widths delta in Mn-Zn and Ni-Zn ferrites are evaluated to be 73 and 58 nm, respectively. Furthermore, through direct observation of the domain structure in Ni-Cu-Zn ferrite with Lorentz microscopy, it is found that the grains with size below 1.5 microm diameter are single domain.  相似文献   
993.
The effects of alloying elements on the thermal stability, glass-forming ability (GFA), corrosion resistance, and magnetic and mechanical properties of a soft magnetic Fe75P10C10B5 metallic glass with a low glass transition temperature (T g) of 723 K (450°C) were investigated. The addition of Mo, Ni, and Co significantly increased the stabilization of supercooled liquid, GFA, and corrosion resistance in the H2SO4 solution. The maximum critical diameter (d c) of 4 mm for glass formation was obtained for the Fe55Co10Ni5Mo5P10C10B5 alloy, which shows the largest supercooled liquid region (ΔT x ) of 89 K (89 °C). The substitution of Cr for Mo further enhanced the corrosion resistance of the Fe55Co10Ni5Mo5P10C10B5, while the ΔT x and d c decreased. The (Fe, Ni, Co)70(Mo, Cr)5P10C10B5 bulk metallic glasses showed low T g of 711 K to 735 K (438 °C to 462 °C), wide ΔT x of 67 K to 89 K, high saturation magnetization of 0.79 to 0.93 T, low coercive force of 2.36 to 6.61 A m?1, high compressive yield strength of 3271 to 3370 MPa, and plastic strain of 0.8 to 2.3 pct. In addition, the mechanism for enhancing stability of supercooled liquid was discussed in terms of the precipitated phases during crystallization.  相似文献   
994.
Transition metal silicides and carbides are attractive advanced materials possessing unique combinations of physical and mechanical properties. However, conventional synthesis of bulk intermetallics is a challenging task because of their high melting point. In the present research, titanium carbides and silicides composites were fabricated on the titanium substrate by a selective laser melting (SLM) of Ti–(20,30,40 wt.%)SiC powder mixtures by an Ytterbium fiber laser with 1.075 μm wavelength, operating at 50 W power, with the laser scanning speed of 120 mm/s. Phase analysis of the fabricated coatings showed that the initial powders remelted and new multiphase structures containing TiCx, Ti5Si3Cx, TiSi2 and SiC phases in situ formed. Investigation of the microstructure revealed two main types of inhomogeneities in the composites, (i) SiC particles at the interlayer interfaces and, (ii) chemical segregation of the elements in the central areas of the tracks. It was suggested and experimentally proven that an increase in laser power to 80 W was an efficient way to improve the laser penetration depth and the mass transport in the liquid phase, and therefore, to fabricate more homogeneous composite. The SLM Ti–(20,30,40 wt.%)SiC composites demonstrated high hardness (11–17 GPa) and high abrasive wear resistance (3.99 × 10−7–9.51 × 10−7 g/Nm) properties, promising for the applications involving abrasive wear.  相似文献   
995.
The ω transformation and its correlation with elastic properties were investigated in cold-worked Ti–36Nb–2Ta–3Zr–xO mass% alloys with low body-centered cubic (β) phase stability, known as gum metal. Analysis of the temperature dependence of the ω (hexagonal) phase formation using transmission electron microscopy and of the elastic properties of solution-treated and cold-worked alloys using resonant ultrasound spectroscopy revealed that in the solution-treated 0.36% and 0.51% O alloys, the high concentration of oxygen suppressed ω-phase formation from room temperature to a fairly low temperature of ~13 K. However, the ω phase was formed by cold working at room temperature in the 0.30% and 0.47% O alloys. Importantly, the fraction of the ω phase clearly increased upon cooling, which indicates that the formation of the ω phase is thermodynamically favorable near and below room temperature in the cold-worked 0.30% and 0.47% O alloys. This formation of the ω phase and the low stability of the β phase related to the low electron/atom (e/a) ratio were the dominant factors determining the elastic properties near and below room temperature in the cold-worked Ti–Nb–Ta–Zr–O alloys.  相似文献   
996.
The decomposition and precipitation behaviors of a quenched Cu–15wt%Sn alloy as a function of aging temperature were investigated using transmission electron microscopy (TEM). Focused ion beam (FIB) was employed to assist TEM specimen preparation. At 300 °C, the decomposition of the supersaturated α′ phase occurred at grain boundaries, displaying a cellular morphology. The lamellae were found with ζ and α phases, rather than with the equilibrium ε and α phases. The ζ and α phases exhibit a well-defined orientation relationship (OR) as $ (1\bar{1}0)_{\alpha } //(0001)_{\zeta } ,\;[11\bar{2}]_{\alpha } //[\bar{1}2\bar{1}0]_{\zeta } $ . On the other hand, at 320 °C, only incipient lamellar structures of several micron meters were observed, which were composed of the δ and α phases. At the same time, abundant intragranular precipitation of the ε phase in the form of platelets was observed, and OR as $ (1\bar{1}1)_{\alpha } //(001)_{\varepsilon } , $ [110] α //[100] ε exists between ε phase and the α phase. These contrasting precipitation behaviors are discussed from the viewpoint of crystallographic coherency of these phases.  相似文献   
997.
Densities and their temperature coefficients of liquid Cr–Fe, Fe–Ni, and Cr–Ni binary alloys have been measured containerless using the technique of electromagnetic levitation. Data have been obtained in a wide temperature range including the supercooled region. The density measurements indicate that these binary systems have a small and positive excess volume, whereas the excess free energies are negative. The temperature coefficients of these alloys can be estimated from those of the pure components. Hence, possible contributions from the temperature dependence of the excess volume can be ignored to calculate the temperature coefficient of density.  相似文献   
998.
A cryogen-free hybrid magnet without liquid helium for operation, generating 27.5 T in a 32 mm room temperature bore of an 8 MW water-cooled resistive insert magnet in an 8.5 T background field of a cryogen-free superconducting outsert magnet, is being operated for basic research at low temperatures down to 17 mK in combination with a dilution refrigerator. In addition, we are developing functional materials using a differential thermal analysis DTA at high temperatures up to 1473 K in high fields up to 27 T. This cryogen-free hybrid magnet will be upgraded to generate 29 T by improving the outer superconducting magnet. A cryogen-free 18.1 T superconducting magnet with a 52 mm room temperature experimental bore, consisting of a Bi2Sr2Ca2Cu3O10 (Bi2223) insert coil, has been developed using a GM-JT cryocooler. Recently, bronze-tape-laminated Bi2223 has revealed excellent irreversible stress tolerance of 250 MPa at 77 K. In addition, the critical current properties for recent Bi2223 tapes are largely improved from 200 to 400 A/cm-width at 77 K in a self-field. Therefore, the stainless steel reinforcement tape incorporated for the previous Bi2223 insert coil is no longer needed for a new Bi2223 one. A new Bi2223 insert coil with almost the same size as the existing insert coil can generate two times higher fields at the elevated operation current from 162 to 191 A. An upgraded cryogen-free superconducting magnet can offer a long-term experiment at the constant magnetic field of 20 T for an in-field heat-treatment investigation.  相似文献   
999.
Cyanide-bridged Fe-Co complex [Fe(Tp)(CN)3]2Co(bpe)?5H2O (1?5H2O; Tp = hydro-tris(pyrazolyl)borate; bpe = 1,2-bis(4-pyridyl)ethane) shows temperature- and light- induced metal-to-metal charge transfer (MMCT) involving spin state changes between magnetic $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{HS}}$ (HS = high spin, LS = low spin) state and nonmagnetic $\mathrm{Fe}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}$ state, while the dehydrated material 1 does not show any MMCT and holds $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{HS}}$ state. We have investigated the magnetic properties of each spin state in 1 and 1?5H2O by means of magnetization and ESR measurement under pulsed high magnetic field. At low temperature below T N, in both 1 and 1?5H2O, the saturation magnetization in the induced ferromagnetic phase is well explained by S and g values derived from the magnetic susceptibility study. In the ESR of 1, we observed characteristic modes corresponding to a spin excitation in the induced ferromagnetic phase where its temperature dependence shows an evolution of spin correlation in the $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{HS}}$ state at low temperature. We further found that the similar ESR modes grow in the light-induced state of 1?5H2O. The results strongly suggest that the light-induced magnetization in 1?5H2O is driven by a light-induced MMCT, which involves transition of spin multiplicity from the nonmagnetic $\mathrm{Fe}^{\mathrm{II}}_{\phantom{\mathrm{II}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}$ to the magnetic $\mathrm{Fe}^{\mathrm{III}}_{\phantom{\mathrm{III}}\mathrm{LS}}\mbox{--}\mathrm{Co}^{\mathrm{II}}_{\phantom{\mathrm{\mathrm{II}}}\mathrm{HS}}$ pair.  相似文献   
1000.
A simple metal-free donor–acceptor type sensitizer U01, bearing strong electron donor indoline-triphenylamine was synthesized for panchromatic sensitization of TiO2 nanocrystalline film. Photovoltaic properties of U01 showed remarkably enhanced light harvesting due to the presence of strong electron donor and robust structure. The new U01 sensitized solar cell exhibited a photovoltaic performance: a short-circuit photocurrent density (Jsc) of 10.70 mA cm−2, an open-circuit photovoltage (Voc) of 0.758 V and a fill factor (FF) of 0.74, corresponding to an overall conversion efficiency of 6.01% under standard global AM 1.5 solar light condition. Our results suggest that indoline-triphenylamine based robust D–A molecular architecture is a highly promising class of panchromatic sensitizers for improvement of the performance of dye-sensitized solar cells (DSCs).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号