首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1861篇
  免费   394篇
  国内免费   527篇
电工技术   23篇
综合类   18篇
化学工业   366篇
金属工艺   110篇
机械仪表   79篇
建筑科学   8篇
矿业工程   5篇
能源动力   120篇
轻工业   11篇
水利工程   1篇
石油天然气   2篇
武器工业   1篇
无线电   1403篇
一般工业技术   453篇
冶金工业   25篇
原子能技术   19篇
自动化技术   138篇
  2024年   5篇
  2023年   115篇
  2022年   108篇
  2021年   70篇
  2020年   115篇
  2019年   119篇
  2018年   93篇
  2017年   161篇
  2016年   153篇
  2015年   145篇
  2014年   178篇
  2013年   110篇
  2012年   163篇
  2011年   127篇
  2010年   119篇
  2009年   137篇
  2008年   86篇
  2007年   212篇
  2006年   221篇
  2005年   76篇
  2004年   17篇
  2003年   28篇
  2002年   31篇
  2001年   36篇
  2000年   29篇
  1999年   31篇
  1998年   18篇
  1997年   14篇
  1996年   13篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
排序方式: 共有2782条查询结果,搜索用时 203 毫秒
91.
BiFeO3 thin films, specifically those fabricated by chemical solution deposition, suffer from severe leakage that hinder the acquirements of their intrinsic high polarizations and are thus normally not considered for use in practical electronics. The controlled fabrication of thin films with reduced leakage is of vital importance. In the present work, BiFeO3 films (with thicknesses below ~300 nm), assisted by an interfacial amorphous layer, were fabricated by chemical solution deposition on Pt/Ti/SiO2/Si substrates. This facile method facilitates the growth of the mentioned amorphous layer, and the ferroelectric properties of the obtained films were greatly enhanced. The conducting mechanisms of both types of thin films were systematically investigated to understand the impact of the designed interface. The results not only advance the potential use of BiFeO3 thin films in electromechanical devices but also promote chemical solution deposition as a promising methodology for the fabrication of high-quality ferroelectric films with compressed leakage.  相似文献   
92.
Manipulating the critical switching field between antiferroelectric (AFE) state and ferroelectric (FE) is an important concept for tuning the energy storage performance of AFEs. As one of the lead-based AFE systems, Pb(Lu1/2Nb1/2)O3 promises high potential in the miniaturization of pulsed power capacitors, but the extremely high critical switching field and low induced saturated polarization demonstrate severe drawbacks with respect to temperature stability and flexibility. Here, A-site Ba2+ doping engineering is used to effectively reduce the critical switching field and improve the saturated polarization in BaxPb1-x(Lu1/2Nb1/2)O3 (0.01 ≤ x ≤ 0.08, abbreviated as xBa-PLN) ceramics. We found the AFE-FE phase transition can be occurred at 80ºC with a high energy storage density of 4.03 J/cm3 for Ba0.06Pb0.94(Lu1/2Nb1/2)O3 ceramic. Our results show that Ba2+ additions destroy the antiparallel structure of AFE phase, and finally reduce the critical switching field, demonstrating a potential alternative to modulate the energy storage performance of AFEs.  相似文献   
93.
Ti2AlN powders were synthesized through molten salt method and re-calcination process using TiH2, Al and TiN powders as raw materials at 1100 ℃. The composition of final composite was directly influenced by the initial Al and TiH2 content in the starting mixture. The purity of the synthesized Ti2AlN powder could reach 97.1 wt% when the Al molar ratio was 1.05. Then high strength Ti2AlN ceramics were successfully prepared in different modes, including two forms of pulse electric current sintering (PECS/SPS) and hot-pressing sintering (HP). A record-high flexural strength of 719 MPa was obtained for the PECS/SPS with an electrical insulating die (PECS/SPS II) sintered sample, based on the synthesized powder in which the initial molar ratio of Al was 1.1. The sintering behaviors in various modes were analyzed, confirming the shrinkage of particles starting at lower temperature in PECS/SPS II. The density, microstructure, Vickers hardness and elastic modulus of sintered ceramics were also investigated. Therefore, the present work provided the new methods about powder preparation and ceramic sintering of Ti2AlN, making it possible to be used as high strength structural ceramics.  相似文献   
94.
Ideal relaxor antiferroelectrics (RAFEs) have high field-induced polarization, low remnant polarization and very slim hysteresis, which can generate high recoverable energy storage Wrec and high energy storage efficiency η, thus attracting much attention for energy storage applications. True RAFEs, on the other hand, are extremely rare, and the majority of them contain environmentally hazardous lead. In this work, we use a viscous polymer rolling process to synthesize a novel and eco-friendly 0.65Bi0.5Na0.4K0.1TiO3-0.35[2/3SrTiO3-1/3Bi(Mg2/3Nb1/3)O3] (BNKT-ST-BMN) dielectric material, which possesses a very typical RAFE-like characteristic. As a result, this material has a high Wrec of 4.43 J/cm3 and a η of 86% at an electric felid of 290 kV/cm, as well as a high thermal stability of Wrec (>3 J/cm3) over a wide range of 30–140 °C at 250 kV/cm. Our findings suggest that the BNKT-ST-BMN material could be a potential candidate for use in energy storage pulse capacitors.  相似文献   
95.
本文以空间超大幅宽低畸变红外变焦扫描成像系统为研究对象,分析给出地面畸变与成像系统瞬时视场角的关系,提出变速扫描成像并推导了扫描角速度公式。为解决匀速360°旋转扫描效率低和双向摆动扫描成像需安装扫描线矫正器所导致的系统复杂性高、可靠性低的缺点,设计了一种正弦加速度快速回扫的方法。对变速扫描以及正弦加速度快速回扫方法进行了仿真及实验,结果表明扫描控制系统慢速扫描与快速回扫之间状态切换稳定,扫描起止角度误差仅为1.44角秒,扫描速度稳定度为±0.5%,扫描成像过程时间误差为83μs,回扫时间误差为250μs,整个扫描周期时间偏差小于1倍像元积分时间(355μs),扫描效率达86%,在提高了扫描效率的同时减小对扫描机构的冲击与振动,满足成像要求。正弦加速度快速回扫方法对机载红外扫描成像系统快速回扫运动设计也具有一定指导意义。  相似文献   
96.
Two-step sintering (TSS) was applied to control the grain growth during sintering of a novel calcium magnesium silicate (Ca3MgSi2O8 – Merwinite) bioceramic. Sol–gel derived nanopowders with the mean particle size of about 90 nm were sintered under different TSS regimes to investigate the effect of sintering parameters on densification behavior and grain growth suppression. Results showed that sintering of merwinite nanopowder under optimum TSS condition (T1 = 1300 °C, T2 = 1250 °C) yielded fully dense bodies with finest microstructure. Merwinite compacts held at T2 = 1250 °C for 20 h had the average grain size of 633 nm while the relative density of about 98% was achieved. Mechanical testing was performed to investigate the effect of grain growth suppression on the hardness and fracture toughness. Comparison of mechanical data for samples sintered under two sintering regimes, including TSS and normal sintering (NS), showed TSS process resulted in significant enhancement of fracture toughness from 1.77 to 2.68 MPa m1/2.  相似文献   
97.
The Cryogenic Underground Observatory for Rare Events (CUORE) experiment at Gran Sasso National Laboratory of INFN searches for neutrinoless double beta decay using TeO2 crystals as cryogenic bolometers. The sensitivity of the measurement heavily depends on the energy resolution of the detector, therefore the success of the experiment stands on the capability to provide an extremely low noise environment. One of the most relevant sources of noise are the mechanical vibrations induced by the five Pulse Tube cryocoolers used on the cryogenic system which houses the detectors. To address this problem, we developed a system to control the relative phases of the pulse tube pressure oscillations, in order to achieve coherent superposition of the mechanical vibrations transmitted to the detectors. In the following, we describe this method and report on the results in applying it to the CUORE system.  相似文献   
98.
High-frequency pulse tube cryocooler (HPTC) has advantages of compact structure, low vibration, high reliability and long operation time. In this study, Theoretical analysis and experimental tests have been conducted in four aspects based on a developed 4 K HPTC. Firstly, a compressor with larger power output capability was employed and the impedance match between the cold head and the compressor was discussed. Secondly, simply using inertance tube configuration to replace the traditional inertance tube-gas reservoir structure. Then, the type and the size of the regenerator materials working at 4–20 K have been experimentally optimized. Finally, the performance of double-inlet working at as low as 20 K has also been tested for the first time for the HPTC. The present prototype achieved a no-load temperature of 3.6 K, which is the lowest temperature record ever reported for HPTC using helium-4 as working gas. A cooling power of 6 mW/4.2 K was also obtained with 250 W input power and a precooling power of 12.1 W/77 K.  相似文献   
99.
Tm3+ activated germanate-tellurite glasses with good thermal stability and anti-crystallization ability were prepared. Efficient 2 μm fluorescence was observed in the optimal concentration Tm3+ doped glass and the corresponding radiative properties were investigated. For Tm3+: 3F4 → 3H6 transition, high spontaneous radiative transition probability (260.75 s−1) and large emission cross section (7.66 × 10−21 cm2) were obtained from the prepared glass. According to Dexter's and Forster's theory, energy transfer microscopic parameters were computed to elucidate the observed 2 μm emissions in detail. Besides, the effect of hydroxy groups quenching was also quantificationally investigated based on simplified rate equations. Results demonstrate that the optimal concentration Tm3+ doped germanate-tellurite glass possessing excellent spectroscopic properties might be an attractive candidate for 2 μm laser or amplifier.  相似文献   
100.
CeO2 nanoparticles (NPs) were synthesized by coprecipitation using cerium(III) nitrate hexahydrate as the precursor and ethanol as the solvent. Different concentration of cobalt-doped cerium oxide NPs (3mol % and 6 mol %) were prepared by adding various concentrations of cobalt chloride to cerium nitrate. The as-synthesized NPs were characterized through X-ray diffraction (XRD) measurements, ultraviolet (UV)–visible spectroscopy, Photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). XRD results reveal that the as-prepared CeO2 NPs had a face-centered cubic structure with crystallite size in the range of 5–8 nm. TEM analyses showed that the CeO2 NPs and Co-doped CeO2 NPs had a homogenous size distribution (sizes were within 5–12 nm). Band-edge absorption of CeO2 NPs redshifted upon increasing the Co concentration as compared to undoped CeO2 NPs. PL spectra reveal a peak shift of CeO2 emission upon cobalt doping, which were due to an increase in oxygen defects localized between the Ce4f and O2p energy levels (i.e., via formation of Ce3+ states). Photocatalytic degradation of methylene blue in aqueous solution under UV and visible (sunlight) irradiation in the presence of pure CeO2 NPs and of Co-doped CeO2 NPs was investigated. The efficiency of photocatalytic degradation of CeO2 NPs increased with the Co concentration both under UV irradiation and under visible light. Co-doped CeO2 NPs (6 mol%) showed degradation efficiencies of 98% and 89% at 420 min of exposure to UV irradiation and to visible light, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号