首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  免费   4篇
  国内免费   2篇
电工技术   202篇
综合类   1篇
化学工业   25篇
金属工艺   10篇
能源动力   36篇
轻工业   1篇
石油天然气   1篇
无线电   17篇
一般工业技术   15篇
原子能技术   4篇
自动化技术   5篇
  2024年   1篇
  2023年   12篇
  2022年   3篇
  2021年   4篇
  2020年   11篇
  2019年   5篇
  2018年   4篇
  2017年   13篇
  2016年   6篇
  2015年   13篇
  2014年   14篇
  2013年   16篇
  2012年   46篇
  2011年   33篇
  2010年   16篇
  2009年   49篇
  2008年   4篇
  2007年   5篇
  2006年   12篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   9篇
  1998年   2篇
  1997年   6篇
  1996年   6篇
  1995年   11篇
  1994年   8篇
  1993年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有317条查询结果,搜索用时 859 毫秒
41.
Cu2ZnSn(S, Se)4 (CZTSSe) thin films were deposited on flexible substrates by three evaporation processes at high temperature. The chemical compositions, microstructures and crystal phases of the CZTSSe thin films were respectively characterized by inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman scattering spectrum. The results show that the single-step evaporation method at high temperature yields CZTSSe thin films with nearly pure phase and high Sn-related phases. The elemental ratios of Cu/(Zn+Sn)=1.00 and Zn/Sn=1.03 are close to the characteristics of stoichiometric CZTSSe. There is the smooth and uniform crystalline at the surface and large grain size at the cross section for the films, and no other phases exist in the film by XRD and Raman shift measurement. The films are no more with the Sn-related phase deficiency.  相似文献   
42.
电动车与航天用锂离子蓄电池的进展   总被引:2,自引:0,他引:2  
锂离子蓄电池作为一种90年代初期发展起来的先进蓄电池,具有高比能量、高电压、长寿命和无记忆效应等特点,七年来的商品应用表明,电池的安全性和实用性均好。根据大容量电池近年来的试验结果与分析,液体电解质常温锂离子蓄电池很有可能被选为电动车、航天和储能用电源,并显示其优异的特性。本文收集并报道了国内外研究机构、电池厂商在此领域的研究成果。同时,也简单介绍了中国天津电源研究所在国家发展计划委员会资助下,对电动车用大容量锂离子蓄电池研究的初步结果。  相似文献   
43.
锂铝-二硫化铁热电池发展现状   总被引:1,自引:0,他引:1  
简要论述了天津电源研究所(TIPS)锂铝合金-二硫化铁热电池发展现状。采用新型FeS2阴极添加剂及独特的添加工艺,有效消除了放电初期电压峰,显著地提高了电池工作电压精度。介绍了在缩短激活时间、降低内阻、提高电池大电流工作能力和脉冲放电能力等方面取得的进展。在1.5A/cm2电流密度下,其内阻一般不超过0.3Ω,在4A/cm2~5A/cm2电流密度下,其内阻可控制在0.6Ω~0.8Ω范围内。此外,本文还介绍了锂铝合金-二硫化铁热电池的环境适应能力。电池可在-50℃~+85℃温度环境下正常工作,在激活状态下,电池可承受1078m/s2的离心作用和30000m/s2~35000m/s2作用时间6ms~8ms的瞬时冲击。在非工作态下,可承受150000m/s2~180000m/s2的冲击。  相似文献   
44.
为满足太阳能无人机对长航时飞行和高载重能力的需求,研究能源系统的储能均衡控制问题.通过将太阳能无人机中每个由光伏-储能-输出单元组成的发电节点作为一个智能体,设计基于多智能体的分布式控制器并给出满足系统约束的控制算法,实现储能单元荷电状态的一致性.分别针对连续系统模型和离散系统模型给出分布式控制协议,并通过理论分析说明连续和离散的控制协议均可实现控制目标.通过搭建半实物平台进行实测验证,采用光伏模拟器和电子负载模拟能源系统运行的外部环境,以18650锂离子电池作为储能单元,实验结果表明,分布式协同控制协议能够有效地解决光伏功率不均及电池参数差异导致的不均衡问题,使系统的充放电深度得以有效提升.  相似文献   
45.
优质电力园区(Premium Power Park,PPP)作为定制电力技术应用的一个重要方面,无论在传统的工业领域,还是在现代的金融、IT行业都得到了应用。文中首先分析了国内外两个典型的PPP——特拉华PPP和仙台市多级电能质量供电系统示范基地的运行情况,并简要地介绍了国内外其它PPP的应用情况;然后从供电方式、所供应负荷类型以及采用定制电力装置的补偿能力等方面对PPP拓扑结构的发展状况进行了分析;最后对PPP今后的研究和发展方向作了总体分析,为今后PPP的规划和建设提供可选方案。  相似文献   
46.
采用热压方法制备阳极半膜电极(AHME)用于直接液流氧化还原燃料电池(DLRFC)单体中,研究了热压过程的条件参数对AHME性能的影响。为了使组装后的DLRFC达到最佳性能,采用高温水、恒电流放电以及变电流放电3种方式对其进行活化,研究了恒电流活化过程中活化条件对DLRFC电化学性能的影响。结果表明,最适宜热压条件是120 ℃,以200 kg/cm2的热压压力保压120 s左右。对于DLRFC单体而言,采用放电活化的方式优于高温水活化。恒电流活化方式中的最适宜活化时间、活化温度和活化电流密度分别是3 h、60 ℃和20 mA/cm2。  相似文献   
47.
金属氢化物镍动力蓄电池的温度特性评估   总被引:1,自引:0,他引:1  
对几种电动汽车用金属氢化物镍动力蓄电池在不同温度下的放电特性、倍率特性、内阻、荷电特性及循环寿命进行了实际测试.测试结果表明,我国目前研制的金属氢化物镍动力蓄电池一般在25℃左右的常温环境中使用时,显示良好的综合性能;在0℃左右的温度仅显示优良的荷电贮存特性;低温条件下的倍率放电性能较差,在55℃环境下长期充放电循环(尤其是高倍率的充放电循环)时,电池的性能迅速下降.最终导致电池较早失效.  相似文献   
48.
低温型锂离子电池性能研究   总被引:1,自引:0,他引:1  
着重对影响锂离子电池低温性能的相关因素进行了试验对比分析.结果表明:影响低温下锂离子电池性能的因素很多,如电解液、导电剂比例、活性物质颗粒度、电极涂覆量等.通过分析,总结出相关因素对制备低温型锂离子电池的影响.  相似文献   
49.
1879年,美国物理学家爱德华·海博特·霍尔发现霍尔效应以来,霍尔技术越来越多地应用于工业控制的各个领域,特别是随着二十世纪中叶第三次产业革命产生的科学技术大爆发,使得基于霍尔效应原理研制而成的霍尔电流传感器,彻底改变了工业应用中对电压、电流的测量方法。霍尔电流传感器是一种新型磁敏传感器,介绍霍尔电流传感器的使用原理,及在卫星电源控制器中应用的典型霍尔电流传感器基本技术条件和在小卫星中对整星方阵电流、负载电流、放电电流的测量举例。  相似文献   
50.
氧电极是固体聚合物电解质(SPE)水电解池(WE)的控制电极,其中扩散层、催化剂的性能将直接影响电解池性能的高低。采用热分解、酸浸蚀、电沉积方法,对钛氧电极扩散层基体进行表面改性研究;探讨了氧电极催化剂对WE极化性能的影响;同时考察了温度、氧电极扩散层对WE性能的影响。结果表明:电沉积法处理钛氧电极扩散层可以使电阻降低,并且在大气中搁置电阻也不会增加;IrO2-RuO2氧电极复合催化剂具有最佳的催化活性;随着电解温度升高,电解电压下降;以电沉积法处理的钛网为氧电极扩散层时,WE性能得到明显提高,在常压、70℃条件下,电解电压为1.65V时,电流密度大于1A/cm2。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号