首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1118篇
  免费   169篇
  国内免费   83篇
电工技术   23篇
综合类   8篇
化学工业   95篇
金属工艺   547篇
机械仪表   25篇
建筑科学   39篇
矿业工程   23篇
能源动力   6篇
轻工业   5篇
水利工程   2篇
石油天然气   11篇
武器工业   2篇
无线电   27篇
一般工业技术   182篇
冶金工业   361篇
原子能技术   10篇
自动化技术   4篇
  2024年   15篇
  2023年   20篇
  2022年   44篇
  2021年   22篇
  2020年   30篇
  2019年   37篇
  2018年   10篇
  2017年   46篇
  2016年   72篇
  2015年   90篇
  2014年   49篇
  2013年   118篇
  2012年   137篇
  2011年   114篇
  2010年   131篇
  2009年   210篇
  2008年   151篇
  2007年   5篇
  2006年   2篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   26篇
  2000年   17篇
  1999年   5篇
  1998年   1篇
排序方式: 共有1370条查询结果,搜索用时 17 毫秒
1.
 近年来,国内外科研工作者开发的连铸凝固末端重压下技术在改善连铸坯的疏松、偏析等方面取得了良好效果,但仍存在扇形段小辊径压下厚铸坯时,应变难以渗透到铸坯芯部、不利于中心疏松改善等不足。以高效率、低成本、低能耗获得高质量厚铸坯,并实现低压缩比轧制高质量厚规格产品,仍需要进一步探索。为了更加有效地解决厚铸坯连铸凝固过程产生的中心疏松及偏析问题,提出一种全新的宽厚板坯连铸大辊径大压下(BRHR)技术并研制了BRHR设备,在宽厚板坯连铸生产线上安装、调试并运行两年多,同时配套开发了宽厚板坯连铸工艺过程预测与控制系统、二冷水工艺优化控制技术。结果表明,开发的BRHR装备与技术有利于压下应变渗透到铸坯芯部,在连铸生产线上利用凝固末端或刚完全凝固(固相分数fs=1.0)形成的大于500 ℃或大于400 ℃的大梯度温度场实施大直径辊大压下,可以显著改善宽厚板坯中心缺陷。生产实践证明,采用BRHR装备与技术使厚度为400 mm的宽厚板连铸坯缩孔、疏松及偏析得到显著改善,结合轧制工艺优化以1.90~2.53的极低压缩比轧制生产出厚度为150~200 mm的高质量特厚板,这对低成本、短流程生产高质量特厚规格产品及节能减排意义重大。  相似文献   
2.
摘要:铁素体轧制是控制精轧过程在铁素体范围内的板带热轧工艺,与传统的“热轧-冷轧-退火”工艺相比,可以实现“以热代冷”,显著节约成本。然而对于一些短流程生产工序,粗轧和精轧之间的高冷速会影响产品的尺寸和组织均匀性,尤其是两相区较宽的低碳钢,更难实现全铁素体区精轧。总结了板带铁素体轧制的相关研究工作,结合各企业铁素体轧制工艺的特点,提出了铁素体轧制工艺参数及组织性能控制目标。围绕铁素体轧制技术应用的几个关键问题展开分析讨论,重点讨论了两相区变形的软化机制及对织构的影响机制,为今后铁素体轧制关键技术的开发提供理论指导。  相似文献   
3.
高温焦炉煤气中焦油的催化裂解是高效利用焦炉煤气的重要环节。对焦油裂解催化剂包括天然矿石催化剂和人工合成催化剂的研究现状进行了总结和分析,并展望了焦油裂解催化剂的发展趋势。采用添加助催化剂、优化预处理条件、合理选择载体以及改善催化剂的结构等改性措施,可以有效提高催化剂的活性、减少积炭和增强其抗中毒的能力,从而达到延长其寿命的目的。通过“嫁接”单一催化剂的优点对多种催化剂进行整合,并科学利用材料领域的最新科研成果(如以碳纳米管作为载体),有望在催化剂的创新开发上获得突破。  相似文献   
4.
自动化和智能化是未来粉末注射成形技术的重要发展方向,本文通过对注射模具温度基于滑动窗口技术的数据挖掘处理以及对注射坯CT切片密度分布的分析修正、阈值预处理后,采用基于神经网络数据融合的方式对多源数据进行融合,实现对注射坯密度分布的有效控制。  相似文献   
5.
林超  张鸿  毕亮  王永锋  吴恒  刘建纲  主力  李敬轩 《材料导报》2016,30(21):143-149
铸造Al-Cu合金的凝固缺陷严重影响了铸件的性能,控制或消除凝固缺陷对提高铸件成品率有重大意义。综述了铸造Al-Cu合金在工程中出现的常见凝固缺陷,如偏析、热裂、显微疏松、缩孔等。重点分析了各类缺陷的形成机理与特点,从合金化、熔铸工艺、热处理工艺、数值模拟等角度提出了减少铸造Al-Cu合金凝固缺陷的方法。  相似文献   
6.
基于气体捕捉法制备泡沫钛三明治结构工艺,对以钢包套+Ti-6Al-4V板+Ti-6Al-4V粉的封装工艺制备的泡沫Ti-6Al-4V三明治结构预制坯进行了900℃下不同变形量的轧制,并进行了950℃/10h的等温发泡。通过SEM对不同状态的三明治结构芯部孔洞状态进行观察和测量,探究了轧制变形量对泡沫Ti-6Al-4V三明治结构预制坯等温发泡行为的影响。结果表明:轧制主要是以沿轧制方向拉长孔洞和增加孔洞连通的方式影响泡沫Ti-6Al-4V三明治结构芯部,且轧制变形量越大越严重,但对孔洞内壁形态及孔洞在垂直于轧向平面内的形态未产生影响。当预制坯轧制变形量为80%时,经等温发泡成功制备了面板厚度为362μm,芯部孔隙率达到40%的泡沫Ti-6Al-4V三明治结构,其在高应变速率下抗压强度达到824.8 MPa,400℃下热导率仅为致密金属的52.8%。  相似文献   
7.
通过原料及配方的创新,以硅酸铝纤维、玻化微珠等为原料制备了一种新型多腔孔陶瓷复合保温材料。研究了材料的导热性能和显微结构。结果表明:材料导热系数低,热面温度200℃时导热系数仅为0.050 W/(m·K),热面温度600℃时导热系数为0.084 W/(m·K);材料内部结构疏松,存在多级配的孔隙结构,孔隙尺寸在微米级以下。利用马弗炉进行保温性能测试,保温材料内表面温度600℃,厚度仅为139mm时,稳态时外表面温度即可低于46℃,散热损失仅为158 W/m~2,远远低于标准规定的最大散热损失266 W/m~2。将材料制成1cm厚度的块材时,材料能产生较大弯曲而不损坏,有利于对电厂高温管道进行包覆。  相似文献   
8.
采用溶胶-凝胶法制备的NiZnFe_2O_4作为绝缘剂包覆铁粉来制备铁基软磁复合材料,并研究了NiZnFe_2O_4含量和成型压力对复合材料磁性能的影响。采用SEM,EDX线扫描及元素面分布分析显示在铁粉颗粒表面存在一层均匀的NiZnFe_2O_4包覆层,绝缘包覆层的存在可以有效地提高软磁复合材料的电阻率。实验结果表明,随着NiZnFe_2O_4包覆剂含量的增加,软磁复合材料的复数磁导率实部值逐渐降低,与其他含量的样品相比,NiZnFe_2O_4含量为3%(质量分数,下同)的样品具有最低的复数磁导率虚部值和相对较高的复数磁导率实部值。NiZnFe_2O_4包覆剂的加入,可以大幅降低材料内部的磁损耗,在100kHz时其磁损耗仅为未包覆样品的16.2%。当NiZnFe_2O_4的含量为3%,成型压力为1000MPa时,软磁复合材料的密度达到7.14g/cm~3,饱和磁感应强度为1.47T。  相似文献   
9.
周健  孟利  杨富尧  吴雪  马光  陈冷 《材料导报》2017,31(14):22-25
对Fe73.5Cu1Nb3Si13.5B9纳米晶铁芯分别进行普通热处理与横磁处理,并检测铁芯经两种热处理后的各项磁性能。获得了各频率下损耗与幅值磁密的关系。结果表明,横磁处理降低损耗效果较明显,该方法在高频电力电子变压器铁芯领域具有潜在应用前景。损耗分离结果表明,横磁处理后,磁滞损耗、涡流损耗、剩余损耗在总损耗中所占比例分别为不变、升高、降低。横磁处理后,磁畴结构改变,以磁矩旋转磁化为主要磁化方式,降低畴壁共振造成的异常损耗是除降低磁滞损耗外,降低总损耗的另一原因。  相似文献   
10.
利用Gleeble-1500热模拟机、光学显微镜(OM)、扫描电镜(SEM)以及透射电镜(TEM)对渗碳钢23CrNi3Mo的连续冷却相变规律以及等温转变规律进行了研究,并基于此,设计了一种新的热处理冷却工艺。研究结果表明,渗碳后试样以0.05℃/s和0.1℃/s的冷速连续冷却时,表面渗碳层为高碳马氏体组织,过渡区为高碳马氏体+下贝氏体的混合组织,基体为下贝氏体组织;渗碳试样外表面在高温段以较低的冷速(0.05~3℃/s)连续冷却时,碳化物沿晶界析出形成网状碳化物;无渗碳的实验钢的贝氏体等温转变温度范围为375~450℃。新的热处理冷却工艺为:试样在880℃保温完成后,采用快速冷却工艺,以冷速大于等于5℃/s进入贝氏体转变温度区,直接入450℃的盐浴炉,入炉后均温5~10min,在低温转变区即贝氏体转变温度区间,采用慢速冷却工艺,冷速小于等于0.1℃/s。获得的试样渗碳层深度为1.4mm,国外的阿特拉斯钎头渗碳层深度为1.2mm,两者基本相同,但前者硬度分布更加平缓;两者表面显微组织均为高碳马氏体组织,过渡区均为马氏体加下贝氏体组织,基体均为贝氏体组织。通过设计新的热处理冷却工艺,获得了与国外钎头相同水平的试样。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号