首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46266篇
  免费   6218篇
  国内免费   3722篇
电工技术   6843篇
技术理论   8篇
综合类   6251篇
化学工业   1229篇
金属工艺   613篇
机械仪表   2838篇
建筑科学   8598篇
矿业工程   743篇
能源动力   798篇
轻工业   762篇
水利工程   457篇
石油天然气   755篇
武器工业   631篇
无线电   8677篇
一般工业技术   2984篇
冶金工业   470篇
原子能技术   256篇
自动化技术   13293篇
  2024年   124篇
  2023年   626篇
  2022年   1130篇
  2021年   1351篇
  2020年   1404篇
  2019年   1218篇
  2018年   1213篇
  2017年   1524篇
  2016年   1804篇
  2015年   2098篇
  2014年   3220篇
  2013年   2780篇
  2012年   3812篇
  2011年   4105篇
  2010年   3359篇
  2009年   3416篇
  2008年   3391篇
  2007年   3776篇
  2006年   3248篇
  2005年   2506篇
  2004年   1886篇
  2003年   1512篇
  2002年   1206篇
  2001年   1008篇
  2000年   900篇
  1999年   663篇
  1998年   489篇
  1997年   423篇
  1996年   357篇
  1995年   330篇
  1994年   273篇
  1993年   201篇
  1992年   189篇
  1991年   124篇
  1990年   115篇
  1989年   102篇
  1988年   79篇
  1987年   43篇
  1986年   39篇
  1985年   22篇
  1984年   23篇
  1983年   10篇
  1982年   21篇
  1981年   15篇
  1980年   11篇
  1979年   10篇
  1978年   7篇
  1977年   8篇
  1975年   5篇
  1959年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
精准预测生物氧化预处理中的进气量对提高黄金提取率和节能降耗具有重要意义。以气体管流连续性方程和运动方程为控制方程,采用Preissmann隐格式法作为差分方法。同时,根据集合卡尔曼滤波(Ensemble Kalman filter,EnKF)算法原理,构造进气量、压强的状态空间模型。结果表明,基于气体管流控制方程建立的进气量模型预测结果与实际进气量观测值具有较好的一致性;与传统静态预测方法相比,EnKF同化方法引入实时观测值和模型参数的更新,有效提高了进气量的预测精度,其平均绝对误差、平均相对误差和均方根误差有明显的降低。可见,基于气体管流控制方程建立的预测模型结合EnKF同化方法是提高生物氧化槽进气量预测精度的有效手段。  相似文献   
12.
For many-objective optimization problems, how to get a set of solutions with good convergence and diversity is a difficult and challenging work. In this paper, a new decomposition based evolutionary algorithm with uniform designs is proposed to achieve the goal. The proposed algorithm adopts the uniform design method to set the weight vectors which are uniformly distributed over the design space, and the size of the weight vectors neither increases nonlinearly with the number of objectives nor considers a formulaic setting. A crossover operator based on the uniform design method is constructed to enhance the search capacity of the proposed algorithm. Moreover, in order to improve the convergence performance of the algorithm, a sub-population strategy is used to optimize each sub-problem. Comparing with some efficient state-of-the-art algorithms, e.g., NSGAII-CE, MOEA/D and HypE, on six benchmark functions, the proposed algorithm is able to find a set of solutions with better diversity and convergence.  相似文献   
13.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
14.
Condition monitoring and fault diagnosis of rolling element bearings timely and accurately are very important to ensure the reliability of rotating machinery. This paper presents a novel pattern classification approach for bearings diagnostics, which combines the higher order spectra analysis features and support vector machine classifier. The use of non-linear features motivated by the higher order spectra has been reported to be a promising approach to analyze the non-linear and non-Gaussian characteristics of the mechanical vibration signals. The vibration bi-spectrum (third order spectrum) patterns are extracted as the feature vectors presenting different bearing faults. The extracted bi-spectrum features are subjected to principal component analysis for dimensionality reduction. These principal components were fed to support vector machine to distinguish four kinds of bearing faults covering different levels of severity for each fault type, which were measured in the experimental test bench running under different working conditions. In order to find the optimal parameters for the multi-class support vector machine model, a grid-search method in combination with 10-fold cross-validation has been used. Based on the correct classification of bearing patterns in the test set, in each fold the performance measures are computed. The average of these performance measures is computed to report the overall performance of the support vector machine classifier. In addition, in fault detection problems, the performance of a detection algorithm usually depends on the trade-off between robustness and sensitivity. The sensitivity and robustness of the proposed method are explored by running a series of experiments. A receiver operating characteristic (ROC) curve made the results more convincing. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on vibration signals.  相似文献   
15.
The ensemble learning paradigm has proved to be relevant to solving most challenging industrial problems. Despite its successful application especially in the Bioinformatics, the petroleum industry has not benefited enough from the promises of this machine learning technology. The petroleum industry, with its persistent quest for high-performance predictive models, is in great need of this new learning methodology. A marginal improvement in the prediction indices of petroleum reservoir properties could have huge positive impact on the success of exploration, drilling and the overall reservoir management portfolio. Support vector machines (SVM) is one of the promising machine learning tools that have performed excellently well in most prediction problems. However, its performance is a function of the prudent choice of its tuning parameters most especially the regularization parameter, C. Reports have shown that this parameter has significant impact on the performance of SVM. Understandably, no specific value has been recommended for it. This paper proposes a stacked generalization ensemble model of SVM that incorporates different expert opinions on the optimal values of this parameter in the prediction of porosity and permeability of petroleum reservoirs using datasets from diverse geological formations. The performance of the proposed SVM ensemble was compared to that of conventional SVM technique, another SVM implemented with the bagging method, and Random Forest technique. The results showed that the proposed ensemble model, in most cases, outperformed the others with the highest correlation coefficient, and the lowest mean and absolute errors. The study indicated that there is a great potential for ensemble learning in petroleum reservoir characterization to improve the accuracy of reservoir properties predictions for more successful explorations and increased production of petroleum resources. The results also confirmed that ensemble models perform better than the conventional SVM implementation.  相似文献   
16.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
17.
针对实体产业对科技资源的服务需求,以服务效应作为资源文本分类标准,提出一种基于多元神经网络融合的分布式资源空间文本分类模型。设计了包含词嵌入层、卷积层、双向门控循环单元层、注意力机制层和softmax层的多元神经网络通路;在此基础上采用基于需求—效应—资源分类策略,完成了从定性科技资源需求到定量资源服务效应求解,再到定性科技资源输出的映射变换,重点解决了分布式科技资源局部和全局语义特征形式多样、文本长距离依赖特征显著、重要资源信息难以准确识别的问题,进而从分布式科技资源空间中快速准确地获取效应知识,提升实体产业产品研发效率和创新能力;通过万方专利科技资源数据集验证了所提方法的可行性和有效性,为更加全面地挖掘资源文本特征和按需服务实体产业提供了一种新的思路和手段。  相似文献   
18.
The operational optimisation of coal-fired power units is important for saving energy and reducing losses in the electric power industry. One of the key issues is how to determine the benchmark values of the energy efficiency indexes of the units. Therefore, a new framework for determining these benchmark values is proposed, based on data mining methods. First, the energy efficiency key performance indicators (KPIs) associated with the net coal consumption rate (NCCR) were selected based on the domain knowledge. Second, the decision-making samples with minimal NCCR were acquired with the fuzzy C-means (FCM) clustering algorithm, and the corresponding clustering centres were employed as the benchmark values. Finally, based on the support vector regression (SVR) algorithm, the target values of the NCCR were obtained with the KPIs as input, and the energy saving potential was evaluated by comparing the target values with the historical values of the NCCR. An actual on-duty 1000 MW unit was taken as study unit, and the results show that the energy saving potential is remarkable when the operators adjust the KPIs based on the calculated benchmark values.  相似文献   
19.
Highly accurate real‐time localization is of fundamental importance for the safety and efficiency of planetary rovers exploring the surface of Mars. Mars rover operations rely on vision‐based systems to avoid hazards as well as plan safe routes. However, vision‐based systems operate on the assumption that sufficient visual texture is visible in the scene. This poses a challenge for vision‐based navigation on Mars where regions lacking visual texture are prevalent. To overcome this, we make use of the ability of the rover to actively steer the visual sensor to improve fault tolerance and maximize the perception performance. This paper answers the question of where and when to look by presenting a method for predicting the sensor trajectory that maximizes the localization performance of the rover. This is accomplished by an online assessment of possible trajectories using synthetic, future camera views created from previous observations of the scene. The proposed trajectories are quantified and chosen based on the expected localization performance. In this study, we validate the proposed method in field experiments at the Jet Propulsion Laboratory (JPL) Mars Yard. Furthermore, multiple performance metrics are identified and evaluated for reducing the overall runtime of the algorithm. We show how actively steering the perception system increases the localization accuracy compared with traditional fixed‐sensor configurations.  相似文献   
20.
Meng Wu  Hailong Li  Hongzhi Qi 《Indoor air》2020,30(3):534-543
Thermal comfort is an important factor for the design of buildings. Although it has been well recognized that many physiological parameters are linked to the state of thermal comfort or discomfort of humans, how to use physiological signal to judge the state of thermal comfort has not been well studied. In this paper, the feasibility of continuously determining feelings of personal thermal comfort was discussed by using electroencephalogram (EEG) signals in private space. In the study, 22 subjects were exposed to thermally comfortable and uncomfortably hot environments, and their EEG signals were recorded. Spectral power features of the EEG signals were extracted, and an ensemble learning method using linear discriminant analysis or support vector machine as a sub-classifier was used to build the discriminant model. The results show that an average discriminate accuracy of 87.9% can be obtained within a detection window of 60 seconds. This study indicates that it is feasible to distinguish whether a person feels comfortable or too hot in their private space by multi-channel EEG signals without interruption and suggests possibility for further applications in neuroergonomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号