首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   37篇
  国内免费   1篇
化学工业   70篇
金属工艺   1篇
机械仪表   7篇
建筑科学   17篇
矿业工程   1篇
能源动力   8篇
轻工业   12篇
水利工程   12篇
石油天然气   1篇
无线电   17篇
一般工业技术   66篇
冶金工业   60篇
原子能技术   1篇
自动化技术   47篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2020年   11篇
  2019年   16篇
  2018年   10篇
  2017年   17篇
  2016年   11篇
  2015年   10篇
  2014年   10篇
  2013年   20篇
  2012年   24篇
  2011年   30篇
  2010年   19篇
  2009年   13篇
  2008年   26篇
  2007年   20篇
  2006年   10篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有320条查询结果,搜索用时 78 毫秒
1.
Optimal tip sonication settings, namely tip position, input power, and pulse durations, are necessary for temperature sensitive procedures like preparation of viable cell extract. In this paper, the optimum tip immersion depth (20–30% height below the liquid surface) is estimated which ensures maximum mixing thereby enhancing thermal dissipation of local cavitation hotspots. A finite element (FE) heat transfer model is presented, validated experimentally with (R2 > 97%) and used to observe the effect of temperature rise on cell extract performance of Escherichia coli BL21 DE3 star strain and estimate the temperature threshold. Relative yields in the top 10% are observed for solution temperatures maintained below 32°C; this reduces below 50% relative yield at temperatures above 47°C. A generalized workflow for direct simulation using the CONSOL code as well as master plots for estimation of sonication parameters (power input and pulse settings) is also presented.  相似文献   
2.
The demand for food production has been constantly increasing due to rising population. In developed countries, for example, the emergence of regional production of old grains that are rarely utilized, along with the production of commonly consumed grains, has gained importance in recent years. These grains, known collectively as ancient or heirloom grains, have offered both farmers and consumers novel ways of cultivation and products with interesting taste, characteristics and nutritional value. Among the 30 000 plant species known, only five cereals currently provide more than 50% of the world's energy intake – bread wheat (Triticum aestivum), rice (Oryza sativa), sorghum (Sorghum bicolor), millets (Panicum sp.) and maize (Zea mays). The excessive utilization of these selected species has a great potential to cause genetic losses and difficulty in bridging future agricultural demands. Teff (Eragrostis tef), an ancient grain extensively cultivated in countries like Eritrea and Ethiopia, provides promising alternatives for new food uses since its nutritional value is significantly higher than most others cereal grains. The absence of gluten allows flexibility in food utilization since it can be directly substituted to gluten-containing products. The grain also offers an excellent balance of essential amino acids and minerals, which can fulfil the recommended daily intake and eliminates the need for fortification and enrichment. This review provides a general overview of the physical properties and nutritional composition of teff grains related to processing and applications in the food and feed industries. The current status of teff utilization, as well as the challenges in production and commercialization, and future opportunities is presented and discussed.  相似文献   
3.
4.
Highly accurate real‐time localization is of fundamental importance for the safety and efficiency of planetary rovers exploring the surface of Mars. Mars rover operations rely on vision‐based systems to avoid hazards as well as plan safe routes. However, vision‐based systems operate on the assumption that sufficient visual texture is visible in the scene. This poses a challenge for vision‐based navigation on Mars where regions lacking visual texture are prevalent. To overcome this, we make use of the ability of the rover to actively steer the visual sensor to improve fault tolerance and maximize the perception performance. This paper answers the question of where and when to look by presenting a method for predicting the sensor trajectory that maximizes the localization performance of the rover. This is accomplished by an online assessment of possible trajectories using synthetic, future camera views created from previous observations of the scene. The proposed trajectories are quantified and chosen based on the expected localization performance. In this study, we validate the proposed method in field experiments at the Jet Propulsion Laboratory (JPL) Mars Yard. Furthermore, multiple performance metrics are identified and evaluated for reducing the overall runtime of the algorithm. We show how actively steering the perception system increases the localization accuracy compared with traditional fixed‐sensor configurations.  相似文献   
5.
Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon.  相似文献   
6.
Buildings consume more than one-third of the world’s primary energy. Reducing energy use and greenhouse-gas emissions in the buildings sector through energy conservation and efficiency improvements constitutes a key strategy for achieving global energy and environmental goals. Building performance simulation has been increasingly used as a tool for designing, operating and retrofitting buildings to save energy and utility costs. However, opportunities remain for researchers, software developers, practitioners and policymakers to maximize the value of building performance simulation in the design and operation of low energy buildings and communities that leverage interdisciplinary approaches to integrate humans, buildings, and the power grid at a large scale. This paper presents ten challenges that highlight some of the most important issues in building performance simulation, covering the full building life cycle and a wide range of modeling scales. The formulation and discussion of each challenge aims to provide insights into the state-of-the-art and future research opportunities for each topic, and to inspire new questions from young researchers in this field.  相似文献   
7.
Abstract

Organisations conducting research programs often focus the work of their scientists and technologists on challenge problems (CPs). These challenges are designed to ensure that progress is measurable and relevant to the goals of the program sponsor. Generating and selecting pertinent CPs is difficult, as is assessing their value. We describe a method of generating and selecting CPs and its application in a highly collaborative, multi-organisation research program. Thirty-eight biologists, chemists, mathematicians and computer scientists across academic, commercial and government organisations generated and ranked their top choices from among 12 richly described candidate challenge problems. A ranked-choice voting formula was applied. Five CPs were highly scored; the remaining seven were distributed across a lower range of scores. The program sponsor subsequently directed researchers to address six CPs, including the elected five. Analysis of the rationales that participants offered for their CP rankings revealed four domain-independent dimensions of value: capability, speed, impact and synergy. These dimensions of value can help managers of interdisciplinary research programs systematically select a portfolio of CPs that will efficiently apply utilise resources towards program goals and facilitate measurement of scientific progress.  相似文献   
8.
Segmented noble-metal nanowires (NWs) represent an exciting, multifunctional, one-dimensional, structural architecture with a variety of potential applications. However, the widespread use of electrodeposition in the preparation of these systems has limited their potential to be produced on a large scale, since this protocol is costly and requires complex processes and caustic reaction media. Given the inherent limitations of electrodeposition, we report, for the first time, an ambient, surfactantless, template-based approach that is not only sustainable but also efficient for the reliable production of Pd/Pt and Pd/Au segmented NWs, possessing two spatially separated, chemically distinctive, but elementally pure, axial subunits. Our simple two-step synthetic approach allows for direct and predictable control over the relative segment lengths in these nanomaterials. Moreover, thorough structural characterization of these as-prepared samples confirms that our segmented NWs maintain high-quality, crystalline, elementally pure subunits with a well-defined interface between the constituent metals. In the context of preparing segmented NWs as multifunctional nanostructures, we demonstrate that these as-prepared NWs achieve high levels of performance when employed as both electrocatalysts and nanomotors.  相似文献   
9.
10.
The remarkable site selectivity and broad substrate scope of flavin-dependent halogenases (FDHs) has led to much interest in their potential as biocatalysts. Multiple engineering efforts have demonstrated that FDHs can be tuned for non-native substrate scope and site selectivity. FDHs have also proven useful as in vivo biocatalysts and have been successfully incorporated into biosynthetic pathways to build new chlorinated aromatic compounds in several heterologous organisms. In both cases, reduced flavin cofactor, usually supplied by a separate flavin reductase (FR), is required. Herein, we report functional synthetic, fused FDH-FR proteins containing various FDHs and FRs joined by different linkers. We show that FDH-FR fusion proteins can increase product titers compared to the individual components for in vivo biocatalysis in Escherichia coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号