首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132911篇
  免费   9351篇
  国内免费   7540篇
电工技术   9039篇
技术理论   2篇
综合类   8341篇
化学工业   28780篇
金属工艺   12183篇
机械仪表   8508篇
建筑科学   4606篇
矿业工程   1910篇
能源动力   3938篇
轻工业   8775篇
水利工程   731篇
石油天然气   4924篇
武器工业   1076篇
无线电   14131篇
一般工业技术   19438篇
冶金工业   3894篇
原子能技术   1582篇
自动化技术   17944篇
  2024年   256篇
  2023年   1630篇
  2022年   2121篇
  2021年   3536篇
  2020年   3003篇
  2019年   3010篇
  2018年   2825篇
  2017年   3711篇
  2016年   4266篇
  2015年   4900篇
  2014年   6551篇
  2013年   7336篇
  2012年   7795篇
  2011年   10266篇
  2010年   8375篇
  2009年   9293篇
  2008年   8609篇
  2007年   9335篇
  2006年   8317篇
  2005年   7015篇
  2004年   6241篇
  2003年   6021篇
  2002年   5155篇
  2001年   3691篇
  2000年   3194篇
  1999年   2557篇
  1998年   1857篇
  1997年   1505篇
  1996年   1303篇
  1995年   1222篇
  1994年   1049篇
  1993年   889篇
  1992年   713篇
  1991年   429篇
  1990年   293篇
  1989年   277篇
  1988年   205篇
  1987年   136篇
  1986年   134篇
  1985年   112篇
  1984年   104篇
  1983年   63篇
  1982年   76篇
  1981年   94篇
  1980年   102篇
  1979年   33篇
  1978年   35篇
  1977年   28篇
  1976年   29篇
  1975年   25篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
81.
This study presents a design criterion developed for fatigue strengthening of a 120-year-old metallic railway bridge in Switzerland and presents a pre-stressed un-bonded reinforcement (PUR) system developed to apply the strengthening. The PUR system uses carbon fiber reinforced polymer (CFRP) plates; however, unlike conventional pre-stressed CFRP reinforcement methods, preparation of the existing metallic bridge surface is not required. This decreases the time required for on-site strengthening procedures. The principle of the constant life diagram (CLD) and two fatigue failure criteria (Johnson and Goodman) are described. Analytical formulations are developed based on the CLD method to determine the minimum CFRP pre-stress level required to prevent fatigue crack initiation. The PUR system uses an applied pre-stress force to reduce the mean stress level (and stress ratio) to shift an existing fatigue-susceptible metallic detail from the ‘at risk’ finite life regime to the ‘safe’ infinite life regime. The applied CLD method is particularly valuable when the stress history of the detail is not known and it is difficult to assess the remaining fatigue life. Moreover, it is shown that the currently adopted approach in many structural codes which emphasizes stress range as the dominant parameter influencing fatigue life are non-conservative for tension–tension stress patterns (i.e., stress ratios of 0 < R < 1). Analyses show that the modified Johnson formula accurately reflects the combined effect of stress range, mean stress level, and material properties, and offers a relatively easy design procedure. Details of a retrofit field application on members of a riveted wrought iron railway bridge are given. A wireless sensor network (WSN) system is used for long-term monitoring of the on-site CFRP stress levels and temperature of the retrofitted details. WSN measurements indicate that increases in ambient temperature result in increased CFRP pre-stress levels.  相似文献   
82.
Production planning and control (PPC) systems that employ aspects from both make-to-order (MTO) and make-to-stock (MTS) production control are known as hybrid MTS/MTO systems. While both MTO and MTS separately have been studied extensively, their combined use has received less attention. However, the literature on this topic is growing and this paper shows that the review performed in this paper is an important addition to the field. We categorise relevant literature according to a novel taxonomy and show that hybrid MTS/MTO production control can be used in different contexts. In addition, an overview of the modelling techniques and methods used in these papers is provided. Based on the reviewed literature, relevant research questions and directions for future research are identified. Finally, it is shown that hybrid MTS/MTO production control is prevalent in practice by discussing research with industrial applications. The paper contains an overview of research on hybrid MTS/MTO production control to be used as reference for researchers active in the field, and provides managerial insights and directions for future research on this topic.  相似文献   
83.
The mammalian cell cycle is important in controlling normal cell proliferation and the development of various diseases. Cell cycle checkpoints are well regulated by both activators and inhibitors to avoid cell growth disorder and cancerogenesis. Cyclin dependent kinase 20 (CDK20) and p21Cip1/Waf1 are widely recognized as key regulators of cell cycle checkpoints controlling cell proliferation/growth and involving in developing multiple cancers. Emerging evidence demonstrates that these two cell cycle regulators also play an essential role in promoting cell survival independent of the cell cycle, particularly in those cells with a limited capability of proliferation, such as cardiomyocytes. These findings bring new insights into understanding cytoprotection in these tissues. Here, we summarize the new progress of the studies on these two molecules in regulating cell cycle/growth, and their new roles in cell survival by inhibiting various cell death mechanisms. We also outline their potential implications in cancerogenesis and protection in heart diseases. This information renews the knowledge in molecular natures and cellular functions of these regulators, leading to a better understanding of the pathogenesis of the associated diseases and the discovery of new therapeutic strategies.  相似文献   
84.
陈义中  胡白杨  罗吉良 《橡胶科技》2020,18(3):0125-0127
从聚酯的结构设计、帘线浸胶工艺和在轮胎中的应用3个方面阐述聚酯结构特点与产品性能的关系。聚酯帘线行业应该密切关注汽车行业的发展态势,把握市场先机,进一步发展壮大;在新能源汽车逆势增长的形势下,高性能聚酯帘线需求量较大,帘线企业应拓展高性能聚酯帘线在轮胎冠带层、带束层和胎体等部件中的应用,同时联合轮胎企业开发特种聚酯材料和混纺材料等新产品。  相似文献   
85.
In this study, two dimensional (2D) and quasi three-dimensional (quasi-3D) shear deformation theories are presented for static and free vibration analysis of single-layer functionally graded (FG) plates using a new hyperbolic shape function. The material of the plate is inhomogeneous and the material properties assumed to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori–Tanaka model, in terms of the volume fractions of the constituents. The fundamental governing equations which take into account the effects of both transverse shear and normal stresses are derived through the Hamilton's principle. The closed form solutions are obtained by using Navier technique and then fundamental frequencies are found by solving the results of eigenvalue problems. In-plane stress components have been obtained by the constitutive equations of composite plates. The transverse stress components have been obtained by integrating the three-dimensional stress equilibrium equations in the thickness direction of the plate. The accuracy of the present method is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.  相似文献   
86.
Due to the law of reflection, a concave reflecting surface/mirror causes the incident light rays to converge and a convex surface/mirror causes the light rays to reflect away so that they all appear to be diverging. These converging and diverging behaviors cause that the curved mirrors show different image types depending on the distance between the object and the mirror. We model such optical phenomena metaphorically into the searching process of numerical optimization by a new algorithm called optics inspired optimization (OIO). OIO treats the surface of the numerical function to be optimized as a reflecting surface in which each peak is assumed to reflect as a convex mirror and each valley to reflect as a concave one. Each individual is assumed to be an artificial object (or light point) that its artificially glittered ray is reflected back by the function surface, given that the surface is convex or concave, and the artificial image is formed (a candidate solution is generated within the search domain) based on the mirror equations adopted from physics of optics. Besides OIO, we introduce different variants of it, called ROIO (Rotation based OIO), and COIO (Convex combination based OIO) algorithms and conduct an extensive computational effort to find out the merit of the new algorithms. Our comparisons on benchmark test functions and a real world engineering design application (i.e., optimization of a centrifuge pump) demonstrate that the new algorithms are efficient and compete better than or similar to most of state of the art optimization algorithms with the advantage of accepting few input parameters.  相似文献   
87.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
88.
The electromagnetic shielding effectiveness of kenaf fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted for removing the lignin and extractives from the fibers and magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by the compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a variable frequency from 9 GHz to 11 GHz. Using the Scanning Electron Microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with the magnetizing treatments increased from 44.8 mJ/m2 to 46.1 mJ/m2, 48.8 mJ/m2 and 53.0 mJ/m2, respectively, while the modulus of elasticity reduced from 2875 MPa to 2729 MPa, 2487 MPa and 2007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30–50% to 60–70%, 65–75% and 70–80%, respectively.  相似文献   
89.
The micromechanics models for composites usually underpredict the tensile strength of polymer nanocomposites. This paper establishes a simple model based on Kelly–Tyson theory for tensile strength of polymer/CNT nanocomposites assuming the effect of interphase between polymer and CNT. In addition, Pukanszky model is joined with the suggested model to calculate the interfacial shear strength (τ), interphase strength (σi) and critical length of CNT (Lc).The proposed approach is applied to calculate τ, σi and Lc for various samples from recent literature. It is revealed that the experimental data are well fitted to calculations by new model which confirm the important effect of interphase on the properties of nanocomposites. Moreover, the derived equations demonstrate that dissimilar correlations are found between τ and B (from Pukanszky model) as well as Lc and B. It is shown that a large B value obtained by strong interfacial adhesion between polymer and CNT is adequate to reduce Lc in polymer/CNT nanocomposites.  相似文献   
90.
《Ceramics International》2019,45(15):18972-18979
Kaolin/graphene oxide composite has been widely utilized in aero-space and architectural engineering applications due to its excellent mechanical property. Direct ink writing (DIW) is a freeform rapid prototyping technology that could be used to accurately fabricate the resulting size with complex shapes. In this study, we reported the DIW of kaolin/graphene oxide (GO) composite suspensions (KGCS) to assemble 3D structures at ambient temperature for the first time. The effects of GO on the chemical constitution and microstructure of kaolin suspensions were investigated. Rheology was characterized to ensure printability of KGCS. The addition of GO in kaolin suspensions quickened a flocculation structure, which dramatically changed their rheology properties. The DIW of 3D structures from the optimal KGCS sample maintained their initial shape without spreading. The flexural and compressive strengths of the dried optimal KGCS samples were obviously enhanced due to the improvement and reduction of the micro-defects compared from cured kaolin matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号