首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   47篇
  国内免费   18篇
电工技术   5篇
综合类   20篇
化学工业   281篇
建筑科学   3篇
矿业工程   2篇
能源动力   95篇
轻工业   7篇
石油天然气   144篇
一般工业技术   10篇
冶金工业   3篇
原子能技术   4篇
自动化技术   44篇
  2023年   10篇
  2022年   18篇
  2021年   27篇
  2020年   27篇
  2019年   26篇
  2018年   19篇
  2017年   25篇
  2016年   24篇
  2015年   43篇
  2014年   68篇
  2013年   68篇
  2012年   54篇
  2011年   64篇
  2010年   34篇
  2009年   26篇
  2008年   14篇
  2007年   16篇
  2006年   19篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有618条查询结果,搜索用时 31 毫秒
131.
为了适应化工流程模拟软件应用日益普及的现状,我们编写了以强化训练学生计算能力为目标的《化工计算与软件应用》教材。本文分析了传统化工计算教材内容的不足,阐明了选用流程模拟软件作为化工计算主要工具的必要性,介绍了新教材编写过程中内容组织、章节安排、编写风格的考虑,对新教材教学方式的变革提出了意见。本教材在校内使用两年来效果明显,学生应用化工流程模拟软件进行工艺设计的能力大幅增强。  相似文献   
132.
The hybrid sulfur thermochemical cycle has been proposed as a means to produce efficiently massive quantities of clean hydrogen using a high-temperature heat source like nuclear or solar. The cycle consists of two steps, one of which is electrolytic. The reversible cell potential for this step and, hence, the resulting operating potential will depend on the concentrations of dissolved SO2 and sulfuric acid at the electrode. To understand better how these are related as functions of temperature and pressure, an Aspen Plus phase equilibrium model using the OLI Mixed Solvent Electrolyte physical properties method was employed to determine the activities of the species present in the system. These activities were used in conjunction with the Nernst equation to determine the reversible cell potential as a function of sulfuric acid concentration, temperature and pressure. A significant difference between the reversible and actual cell potentials was found, suggesting that there may be considerable room for reducing the operating potential.  相似文献   
133.
赵熠 《齐鲁石油化工》2009,37(3):189-193
采用实时数据,利用Aspen流程模拟软件对齐鲁分公司塑料厂HDPE装置循环气冷却器换热效能进行计算,为设备改造提供理论依据。  相似文献   
134.
This work considers the use of a Molten Carbonate Fuel Cell (MCFC) system as a power generation and CO2 concentrator unit downstream of the coal burner of an existing production plant. In this way, the capability of MCFCs for CO2 segregation, which today is studied primarily in reference to large-scale plants, is applied to an intermediate-size plant highlighting the potential for MCFC use as a low energy method of carbon capture. A technical feasibility analysis was performed using an MCFC system-integrated model capable of determining steady-state performance across varying feed composition. The MCFC user model was implemented in Aspen Custom Modeler and integrated into the reference plant in Aspen Plus. The model considers electrochemical, thermal, and mass balance effects to simulate cell electrical and CO2 segregation performance. Results obtained suggest a specific energy requirement of 1.41 MJ kg CO2?1 significantly lower than seen in conventional Monoethanolamine (MEA) capture processes.  相似文献   
135.
A novel bioprocess design to convert paper mill sludge (PMS) to biofuels is proposed in this work. The design utilizes cellulosic fiber recovered from the PMS via optimized de-ashing (HCl washing) step. This work specifically provided a technical and economic analysis of paper mill sludge conversion into biofuel production using a novel protocol. The protocol is based on scanning electron microscopy (SEM) analysis to assess the quality of the contained cellulose prior to further processing. The results are crucially important to determine the suitability of the PMS feedstock to produce biofuels. SEM analysis was employed as a preliminary screening tool to evaluate sludge digestibility and conversion. The SEM characterization technique established a direct relationship between the fiber morphology, presence of crystals salts and sugar yield after enzymatic hydrolysis. Substantial structural changes were observed before and after de-ashing the sludge samples, leading to a correlation between the surface morphology and the washing step. The results suggested that de-ashing changes the surface morphology and upon analysis, increased the sugar yield up to about 86% as opposed to 2.2% in sludge sample A as an example. The PMS conversion into biofuel was simulated using Aspen PLUS and compared to a similar process using corn stover as feedstock. The simulation results showed it is 20% cheaper to produce bioethanol from PMS compared to corn stover. The simulation revealed less energy demand by around 13 320 MJ/h compared to that when corn stover was used.  相似文献   
136.
This process modelling studied the effect of different reactants on syngas composition and gasifier heat duty (heat energy required to carry out the operation) and the downstream treatment of CO rich syngas to maximise hydrogen yield. The process modelling was validated against experimental data obtained from a large bench-scale entrained flow gasifier. Results show that considering the H2/CO ratio, the steam-O2 reactant favours the most compared to those of the pure oxygen and oxygen-CO2 reactants. Under comparable operating conditions, the highest H2/CO ratio of 0.74 was determined using steam-O2 reactant compared to that of 0.31 and 0.33 using steam-CO2 and pure oxygen reactant. The catalytic water-gas shift reaction (WGSR) favours the yield of H2 with complete CO conversion at a temperature of 400 °C using the steam/coal ratio of 1.2. Supplying steam in the gasifier requires more heat energy to be supplied to drive endothermic gasification reaction and maintain the gasifier temperature. Under complete carbon conversion, steam-CO2 and steam-oxygen reactants require 5–65 kW more energy than pure oxygen.  相似文献   
137.
The plasma gasification process is one of the newest and most innovative approaches to meet the needs of waste management but requires assessment and research on operational conditions prior to installation. In this work, a model based on Gibbs free energy minimization was developed and implemented in Aspen Plus®. A combination of municipal solid waste (MSW) and coal has been used as feedstocks. The model's performance was compared with the results of the literature and found to be in good agreement. The effect of various parameters such as temperature, equivalence ratio, MSW/coal blending ratio, and steam-to-feedstock ratio on the composition of syngas and hydrogen production were assessed. Very interesting results were obtained concerning the mixture of the feedstocks that maximize the hydrogen production besides that using steam as a gasifying agent allows higher hydrogen production than using air. When using high amounts of coal in the feedstock mixture, low steam ratios are preferred. When using high amounts of MSW in the feedstock mixture high steam ratios are preferred. The use of pure oxygen as the gasifying agent increases the hydrogen percentage but requires an air separation unit to be included in the process. The results obtained in this study are particularly relevant for countries with coal reserves.  相似文献   
138.
A thermodynamic Aspen Plus simulation model for a reversible solid oxide fuel cell (RSOFC) is presented and evaluated. It is composed of an electrolysis and a fuel cell module. The latter is based on an existing non reversible SOFC model. The electrolysis model simulates water electrolysis as well as catalytic reactions of inlet gases. The model has been validated using data from literature. It has been found that the support layer on fuel electrode supported cells has to be treated differently in terms of diffusion than the active layer. Simulation results show that for the investigated cell parameters, the positive effect of adding CO2 to the steam feed on the electrolysis process is due to water–gas-shift reactions and not CO2 electrolysis. An analysis of outlet gas compositions in electrolysis mode showed that the assumption of the cell as an equilibrium reactor was justified. A parameter study has been conducted, showing that increasing the operation temperature and pressure can improve the overall performance, while changing the inlet gas compositions in general improves either fuel cell or electrolysis mode and deteriorates performance for the other mode.  相似文献   
139.
针对解吸气部分替代天然气制取合成氨用合成气的反应过程,建立了数学模型,基于Aspen Plus软件,模拟2种进料情况下的反应,验证解吸气部分替代天然气可行性。分析了主要工艺条件如氧气/原料气体积比、蒸汽用量对气化炉出口气体成分和炉膛温度的影响。对比解吸气部分替代和纯天然气进料的经济性,当天然气价格为1.875元/m3时,2种原料气合成氨的成本相同。但随着天然气价格的上涨,采用解吸气部分替代后将有明显的经济性优势。  相似文献   
140.
Carbon dioxide emissions into the atmosphere are considered among the main reasons of the greenhouse effect. The largest share of CO2 is emitted by power plants using fossil fuels. Nowadays there are several technologies to capture CO2 from power plants' exhaust gas but each of them consumes a significant part of the electric power generated by the plant. The Molten Carbonate Fuel Cell (MCFC) can be used as concentrator of CO2, due to the chemical reactions that occurs in the cell stack: carbon dioxide entering into the cathode side is transported to the anode side via CO3= ions and is finally concentrated in the anodic exhaust. MCFC systems can be integrated in existing power plants (retro fitting) to separate CO2 in the exhaust gas and, at the same time, produce additional energy. The aim of this study is to find a feasible system design for medium scale cogeneration plants which are not considered economically and technically interesting for existing technologies for carbon capture, but are increasing in numbers with respect to large size power plants. This trend, if confirmed, will increase number of medium cogeneration plants with consequent benefit for both MCFC market for this application and effect on global CO2 emissions. System concept has been developed in a numerical model, using AspenTech engineering software. The model simulates a plant, which separates CO2 from a cogeneration plant exhaust gases and produces electric power. Data showing the effect of CO2 on cell voltage and cogenerator exhaust gas composition were taken from experimental activities in the fuel cell laboratory of the University of Perugia, FCLab, and from existing CHP plants. The innovative aspect of this model is the introduction of recirculation to optimize the performance of the MCFC. Cathode recirculation allows to decrease the carbon dioxide utilization factor of the cell keeping at the same time system CO2 removal efficiency at high level. At anode side, recirculation is used to reduce the fuel consumption (due to the unreacted hydrogen) and to increase the CO2 purity in the stored gas. The system design was completely introduced in the model and several analyses were performed. CO2 removal efficiency of 63% was reached with correspondent total efficiency of about 35%. System outlet is also thermal power, due to the high temperature of cathode exhaust off gases, and it is possible to consider integration of this outlet with the cogeneration system. This system, compared to other post-combustion CO2 removal technologies, does not consume energy, but produces additional electrical and thermal power with a global efficiency of about 70%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号