首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   27篇
  国内免费   3篇
综合类   9篇
化学工业   346篇
机械仪表   2篇
建筑科学   1篇
能源动力   80篇
轻工业   23篇
石油天然气   11篇
一般工业技术   8篇
自动化技术   4篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2018年   15篇
  2017年   12篇
  2016年   31篇
  2015年   25篇
  2014年   27篇
  2013年   30篇
  2012年   15篇
  2011年   76篇
  2010年   52篇
  2009年   57篇
  2008年   36篇
  2007年   23篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有484条查询结果,搜索用时 593 毫秒
41.
High-purity ethylene carbonate (EC) is widely used as battery electrolyte, polycarbonate monomer, organic intermediate, and so on. An economical and sustainable route to synthesize high-purity ethylene carbonate (EC) via the transesterification of dimethyl carbonate (DMC) with ethylene glycol (EG) is provided in this work. However, this reaction is so fast that the reaction kinetics, which is essential for the industrial design, is hard to get by the traditional measuring method. In this work, an easy-to-assemble microreactor was used to precisely determine the reaction kinetics for the fast transesterification of DMC with EG using sodium methoxide as catalyst. The effects of flow rate, microreactor diameter, catalyst concentration, reaction temperature, and reactant molar ratio were investigated. An activity-based pseudo-homogeneous kinetic model, which considered the non-ideal properties of reaction system, was established to describe the transesterification of DMC with EG. Detailed kinetics data were collected in the first 5 min. Using these data, the parameters of the kinetic model were correlated with the maximum average error of 11.19%. Using this kinetic model, the kinetic data at different catalyst concentrations and reactant molar ratios were predicted with the maximum average error of 13.68%, suggesting its satisfactory prediction performance.  相似文献   
42.
A synthesis of diethyl carbonate through transesterification of propylene carbonate and ethanol, coproducing useful propylene glycol, was carried out in the presence of sodium ethoxide as catalyst. The effects of reaction parameters such as catalyst concentration, mole ratio of ethanol to propylene carbonate and reaction temperature on the transesterfication reaction were investigated. The results showed that the reaction is reversible with a propylene carbonate equilibrium conversion of about 64 % at an ethanol to propylene carbonate mole ratio of 8.0 and a reaction temperature of 303 K. A kinetic model was proposed based on the reaction mechanism. The model parameters were estimated by the Runge‐Kutta method. The statistical test showed that the model calculation results were in good agreement with the experimental data.  相似文献   
43.
P. Sivakumar  S. Renganathan 《Fuel》2011,90(1):147-151
The potential of using dairy waste scum as a feed stock for bio-diesel production was investigated. Present study optimized the parameters involved in transesterification process of Dairy Waste Scum Oil. Gas chromatography was used to determine the fatty acid composition of Dairy Waste Scum Oil. Results revealed that the low free fatty acid content was a notorious parameter to determine the viability of alkaline transesterification. The yield of bio-diesel reached 96.7% when 1.2 wt.% of Potassium Hydroxide, reaction temperature of 75 °C, 30 min of time and 6:1 Methanol oil ratio at 350 rpm. Thermo gravimetric analysis followed the evaluation of transesterification process. The present analysis confirms that bio-diesel from dairy waste scum is quit suitable as an alternative to petroleum diesel with recommended fuel properties as per ASTM standards. This new way for using dairy waste scum reduces the cost of production of bio-diesel and the problem related to the disposal of Dairy scum.  相似文献   
44.
In this study, a supercritical one-pot process combining transesterification and partial hydrogenation was proposed to test its technical feasibility. Simultaneous transesterification of soybean oil and partial hydrogenation of polyunsaturated compounds over Cu catalyst in supercritical methanol was performed at 320 °C and 20 MPa. Hydrogenation proceeded simultaneously during the transesterification of soybean oil in supercritical methanol, and hydrogenation occurred during the reaction despite the absence of hydrogen gas. The polyunsaturated methyl esters obtained in the biodiesel were mainly converted to monounsaturated methyl esters by partial hydrogenation. Key properties of the partially hydrogenated methyl esters were improved and complied with standard specifications for biodiesel.  相似文献   
45.
This paper describes experimental work done towards the search for more profitable and sustainable alternatives regarding biodiesel production, using heterogeneous catalysts instead of the conventional homogenous alkaline catalysts, such as NaOH, KOH or sodium methoxide, for the methanolysis reaction. This experimental work is a first stage on the development and optimization of new solid catalysts, able to produce biodiesel from vegetable oils. The heterogeneous catalytic process has many differences from the currently used in industry homogeneous process. The main advantage is that, it requires lower investment costs, since no need for separation steps of methanol/catalyst, biodiesel/catalyst and glycerine/catalyst. This work resulted in the selection of CaO and CaO modified with Li catalysts, which showed very good catalytic performances with high activity and stability. In fact FAME yields higher than 92% were observed in two consecutive reaction batches without expensive intermediate reactivation procedures. Therefore, those catalysts appear to be suitable for biodiesel production.  相似文献   
46.
生物柴油及其生产技术的进展   总被引:5,自引:0,他引:5  
介绍了由可再生油脂原料衍生的环保燃料生物柴油在国内外应用现状,重点介绍了酯交换法制备生物柴油技术研究进展情况,展望了生物柴油产业在我国的发展前景。  相似文献   
47.
CaO–ZrO2 catalysts were prepared by coprecipitation and their catalytic performances were evaluated in the synthesis of dimethyl carbonate from propylene carbonate and methanol. The characterization by XRD, N2 adsorption, XPS and CO2–TPD indicated that Ca2+ ion substituted for Zr4+ ions in the host lattice to form homogeneous CaO–ZrO2 solid solution when Ca/(Ca + Zr) ratio changed from 0.1 to 0.3, and CaO segregated at grain boundaries with Ca/(Ca + Zr) ratio from 0.4 to 0.5. As a result, the catalysts showed different activity and stability towards the transesterification of propylene carbonate and methanol into dimethyl carbonate. The activity of catalysts was improved with increase in Ca content, whereas high stability was shown with Ca/(Ca + Zr) ratio below 0.3. The formation of homogeneous CaO–ZrO2 solid solution was responsible for the stability of catalysts.  相似文献   
48.
M.S. Kotwal 《Fuel》2009,88(9):1773-558
Flyash-based base catalyst was used in the transesterification of sunflower oil with methanol to methyl esters in a heterogeneous manner. Catalyst preparation variables such as, the KNO3 loading amount and calcination temperature were optimized. The catalysts were characterized by powder XRD. The catalyst prepared by loading of 5 wt.% KNO3 on flyash followed by its calcination at 773 K has exhibited maximum oil conversion (87.5 wt.%). The influence of various reaction parameters such as % catalyst loading, methanol to oil molar ratio, reaction time, temperature, reusability of the catalyst on the catalytic activity was investigated. K2O derived from KNO3 might be an essential component in the catalyst for its efficiency.  相似文献   
49.
Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the three important reaction variables — methanol/oil molar ratio (x1), reaction time (x2) and amount of catalyst (x3) for production of biodiesel from palm oil using KF/ZnO catalyst. Based on the CCD, a quadratic model was developed to correlate the reaction variables to the biodiesel yield. From the analysis of variance (ANOVA), the most influential factor on the experimental design response was identified. The predicted yield after process optimization was found to agree satisfactory with the experimental value. The optimum conditions for biodiesel production were found as follows: methanol/oil ratio of 11.43, reaction time of 9.72 h and catalyst amount of 5.52 wt%. The optimum biodiesel yield was 89.23%.  相似文献   
50.
This study introduces a two consecutive steps basic–acid transesterification process, (denominated Transesterification Double Step Process — TDSP) for biodiesel production from vegetable oils. The process involves homogeneous consecutive basic–acid catalysis steps and is characterized by formation of well-defined phases, easy separation procedures, high reaction velocity and high conversion efficiency. The proposed TDSP is different in relation to other traditional two-step procedures which normally include acid esterification followed by basic transesterification, or enzymatic or even supercritical transesterification conditions. The biodiesel (fatty acid methyl esters) was analyzed by standard biodiesel techniques in addition to 1H-NMR, indicating high quality and purity biodiesel products. The transesterification of sunflower and linseed oils resulted in oil conversions higher than 97% corresponding to yields of 85%. A probable reaction mechanism responsible for the process is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号