首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2314篇
  免费   131篇
  国内免费   76篇
电工技术   32篇
综合类   106篇
化学工业   1242篇
金属工艺   194篇
机械仪表   37篇
建筑科学   33篇
矿业工程   12篇
能源动力   81篇
轻工业   116篇
水利工程   1篇
石油天然气   50篇
武器工业   6篇
无线电   77篇
一般工业技术   438篇
冶金工业   57篇
原子能技术   17篇
自动化技术   22篇
  2024年   2篇
  2023年   63篇
  2022年   67篇
  2021年   80篇
  2020年   64篇
  2019年   74篇
  2018年   91篇
  2017年   100篇
  2016年   62篇
  2015年   43篇
  2014年   80篇
  2013年   124篇
  2012年   109篇
  2011年   136篇
  2010年   98篇
  2009年   107篇
  2008年   102篇
  2007年   137篇
  2006年   143篇
  2005年   90篇
  2004年   81篇
  2003年   92篇
  2002年   114篇
  2001年   104篇
  2000年   81篇
  1999年   66篇
  1998年   46篇
  1997年   53篇
  1996年   16篇
  1995年   30篇
  1994年   21篇
  1993年   3篇
  1992年   11篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   7篇
  1987年   3篇
  1984年   1篇
排序方式: 共有2521条查询结果,搜索用时 15 毫秒
91.
A continuous process for producing porous carbon xerogel beads has been developed. It consists in injecting a pre‐cured aqueous solution of resorcinol and formaldehyde on top of a column filled with hot oleic acid. The latter is pumped on the top of the column and fed at the bottom, generating an upward flow that can be adjusted to match the terminal velocity of the settling beads. Thus, the bead residence time in the column can be adjusted to match the gelation time, allowing the beads to solidify before reaching the bottom of the vessel. The obtained beads are subsequently dried and pyrolyzed. The developed experimental setup proved the continuous synthesis of porous carbon beads is possible. Nevertheless, the shaping process caused various texture changes of the porous carbon, which mainly yields macropores instead of micro and mesopores. This process also leads to the build‐up of a denser skin around the beads. © 2018 American Institute of Chemical Engineers AIChE J, 64: 1049–1058, 2018  相似文献   
92.
We report on the synthesis, characterization and optical properties of barium strontium titanate (BST) quasi photonic crystals (PCs) through a sol–gel technique with the porous alumina template (PAT). The structure, morphology and pore-size distribution of the samples were characterized by SEM, XRD and EDS, The Ba0.6Sr0.4TiO3 PCs of crystalline cubic phase with uniform pore size and ordered arrange were successfully synthesized. The obtained quasi BST PCs not only show that the nanostructure has spatially periodical orderly arrangement, but also exhibit good optical transmittance properties. The advantage of this sol–gel technique with PAT to fabricate ferroelectric (FE) nanopore arrays lies in its low cost and simplicity. This study opens a pathway for the effective fabrication and studies of FE nanopore arrays in uniquely large area.  相似文献   
93.
Two different types of metals (Cu and Ni) and the effect of CeO2 addition to produce a CeO2‐ZrO2 co‐supporter were investigated through the water‐gas shift (WGS) reaction. It was found that the WGS activity could be enhanced with CeO2 addition. At relatively high temperature, Ni‐loaded catalysts exhibited higher CO conversion while Cu‐loaded catalysts demonstrated better performance at low temperatures. The stability and yield of the CO2 and H2 products of the Cu catalysts were higher than those of the Ni catalysts. These results may be caused by an irreversible adsorption of CO on Ni and the reverse WGS reaction occurring on the Ni catalysts. In situ diffuse‐reflection infrared Fourier transform spectroscopy data suggests that the WGS mechanism likely proceeded via formate species.  相似文献   
94.
A porous nano‐CaO/MgO‐based adsorbent was prepared using MgO as a support in order to increase the sorption capacity and durability. The magnesium sol prepared by reacting MgO slurry with citric acid was added to nano‐CaCO3 slurry and the mixture was calcinated to obtain the nano‐CaO/MgO‐based adsorbent. The influence of MgO content on the structure and sorption performance of the resulting adsorbent was studied in detail. The pore radius and specific surface area of the adsorbent increased with higher MgO content. The adsorbent exhibited superior sorption performance during calcium looping and maintained a good durability at the calcination temperature, thus being an interesting candidate for future work.  相似文献   
95.
Tensile strain is thought to give rise to enhanced conduction properties in ion conducting compounds. However, most experimental studies in the field involve simultaneous presence of interface structures and strain, thus complicating separation of the individual effects. Here, we present molecular dynamics calculations that clarify the influence of biaxial strain in bulk yttria-stabilised zirconia. Such a study mimics what may be experimentally observed in epitaxially deposited films. We show that, as expected, tensile strain leads to enhanced ion conduction properties. The maximum enhancement is observed for a 2–3% tensile strain. We show that the increase of bulk diffusion is in part due to an opening of the Zr–Zr and Zr–Y distances induced by tensile strain, leading to a smaller oxygen migration energy. Above a 3% tensile strain, the diffusion coefficient of oxygen is strongly reduced, reaching values even lower than without strain. This decrease is associated with important structural changes of the cation and oxygen network. Also, we show that the diffusion coefficient increases by less than a factor 2 at 833 K for the optimal strain value. This confirms that the great increase of conductivity observed in zirconia/strontium titanate multilayers was due either to an electron contribution from strontium titanate or to the presence of interfaces, but not to the direct influence of strain on the oxygen diffusion coefficient in zirconia.  相似文献   
96.
Zirconia nanocrystals have attracted considerable interest as biolabels, which can be used as probes for medical imaging and biosensor applications. However, zirconia particle agglomeration forms a major limitation to its use for biolabeling. In this backdrop, for the first time, well-separated zirconia nanocrystals were obtained in a Heliotron reactor (PROMES CNRS, France) via the solar physical vapor deposition (SPVD) method. As the raw material target for solar evaporation, zirconia nanopowders obtained via the sol–gel process were used. The luminescence and upconversion luminescence properties of the Sol Gel nanopowders were compared with those of the SPVD nanocrystals. Erbium was chosen as the luminescence center with ytterbium as the sensitizer, and along with these two dopants, niobium was also used. Niobium acts as a charge compensator to compensate for depletion in the charge due to the introduction of trivalent erbium and ytterbium at tetravalent zirconium sites. Consequently, the oxygen-vacancy concentration is reduced, and this results in a significant increase in the upconversion luminescence.The SPVD-prepared samples showed less agglomeration and a fine crystal structure as well as high luminescence, and thus, such samples can be of great interest for biolabeling applications.  相似文献   
97.
The functional properties of electroceramic thin films can be degraded by subtractive patterning techniques used for microelectromechanical (MEMS) applications. This work explores an alternative deposition technique, where lead zirconate titanate (PZT) liquid precursors are printed onto substrates in a desired geometry from stamp wells (rather than stamp protrusions). Printing from wells significantly increased sidewall angles (from ~1 to >35 degrees) relative to printing solutions from stamp protrusions. Arrays of PZT features were printed, characterized, and compared to continuous PZT thin films of similar thickness. Three‐hundred‐nanometer‐thick printed PZT features exhibit a permittivity of 730 and a loss tangent of 0.022. The features showed remanent polarizations of 26 μC/cm2, and coercive fields of 95 kV/cm. The piezoelectric response of the features produced an e31,f of ?5.2 C/m2. This technique was also used to print directly atop prepatterned substrates. Optimization of printing parameters yielded patterned films with 90° sidewalls. Lateral feature sizes ranged from hundreds of micrometers down to one micrometer. In addition, several device designs were prepatterned onto silicon on insulator (SOI) wafers (Si/SiO2/Si with thicknesses of 0.35/1/500 μm). The top patterned silicon was released from the underlying material, and PZT was directly printed and crystallized on the free‐standing structures.  相似文献   
98.
Macroporous and nano-crystallized monoclinic zirconia (m-ZrO2) film was prepared by micro-arc oxidation (MAO). The effect of ultraviolet (UV) irradiation on the microstructure, water contact angle and bioactivity of the film were investigated. The MAO-formed ZrO2 film exhibits high hardness and elastic modulus. UV irradiation of the ZrO2 film does not alter surface morphology, grain size and phase component, however, can significantly improve hydrophilicity and bioactivity of the film. The enhanced hydrophilicity and bioactivity are thought to result from the abundant basic Zr-OH groups on the UV-irradiated film, which have relative long-term stability.  相似文献   
99.
为了改善合成纤维-水泥基体界面黏结性质,通过化学沉积纳米二氧化硅,制备了一系列的改性纤维.使用X射线能谱仪(EDS)确认二氧化硅的存在,采用扫描电镜(SEM)观察纳米颗粒在纤维表面的分布,从而评价化学沉积时间对沉积效果的影响,并通过单丝纤维拔出行为和塑性抗裂性能试验证实改性纤维的优势.结果表明:对聚丙烯(PP)纤维而言,合适的化学沉积时间为60 min,此时纳米二氧化硅粒子的平均粒径为300 nm;聚乙烯醇(PVA)纤维表面具有的亲水性质,使纳米二氧化硅在其上的分布形态与在PP纤维上明显不同;改性纤维的界面黏结强度显著提高,表现出优良的抗裂性能,其原因可能是由于二氧化硅的水化活性,水化产物在单丝拔出及塑性抗裂时起到了物理锚固及化学键合的双重作用.  相似文献   
100.
脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能   总被引:2,自引:0,他引:2  
以工业水玻璃为纳米SiO2前驱物,以癸酸(CA)和月桂酸(LA)二元低共熔酸为相变芯材,在表面活性剂的参与下,采用溶胶-凝胶法一步制备出纳米级复合定形相变蓄热材料.利用透射电子显微镜,扫描电子显微镜,傅里叶红外光谱仪,方差扫描量热法和热重分析等测试技术对此定形相变蓄热材料的结构和性能进行分析,并采用瞬态热线法测量了其导热系数.结果表明:相变芯材在吸热熔化后不会产生流动和渗漏;复合相变材料中脂肪酸含量(质量分数)为46%,具有良好的相变蓄热性能(相变温度19.57℃,相变潜热71.28 J/g)和热稳定性;复合相变材料导热系数为0.178 W/(m·K),可作为一种良好的隔热、保温建筑材料.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号