首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55010篇
  免费   5797篇
  国内免费   3037篇
电工技术   4279篇
综合类   3463篇
化学工业   15853篇
金属工艺   4729篇
机械仪表   2413篇
建筑科学   4239篇
矿业工程   815篇
能源动力   4967篇
轻工业   2984篇
水利工程   634篇
石油天然气   2243篇
武器工业   773篇
无线电   4065篇
一般工业技术   8653篇
冶金工业   2024篇
原子能技术   805篇
自动化技术   905篇
  2024年   225篇
  2023年   1164篇
  2022年   1563篇
  2021年   2055篇
  2020年   2161篇
  2019年   1984篇
  2018年   1837篇
  2017年   2193篇
  2016年   2161篇
  2015年   2123篇
  2014年   3112篇
  2013年   3705篇
  2012年   3653篇
  2011年   3954篇
  2010年   2890篇
  2009年   3023篇
  2008年   2638篇
  2007年   3392篇
  2006年   3253篇
  2005年   2538篇
  2004年   2251篇
  2003年   1808篇
  2002年   1637篇
  2001年   1370篇
  2000年   1201篇
  1999年   965篇
  1998年   864篇
  1997年   745篇
  1996年   597篇
  1995年   481篇
  1994年   384篇
  1993年   291篇
  1992年   286篇
  1991年   266篇
  1990年   221篇
  1989年   191篇
  1988年   134篇
  1987年   81篇
  1986年   75篇
  1985年   75篇
  1984年   74篇
  1983年   59篇
  1982年   58篇
  1981年   30篇
  1980年   25篇
  1979年   12篇
  1978年   4篇
  1975年   6篇
  1959年   8篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。  相似文献   
12.
13.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   
14.
Aromatic and functional polymers with processibility derived from biobased starting materials are prerequisite considering sustainable society. Poly(2,5-benzimidazole)s are rigid-rod polymers to show ultrahigh thermal stability such as flame retardance, while usually suffer from poor solubility. Here, poly(benzimidazole-co-amide)s are synthesized from two biobased monomers, 3,4-diaminobenzoic acid and a semirigid comonomer, 4-aminohydrocinnamic acid. The copolymers with an amide composition of 80 mol% and higher are soluble in widely used polar solvents to fabricate the films keeping high flame retardance, which is comparable with popular high-performance polymers such as aromatic polyimides, polyetheretherketone, polyphenylene sulfide, etc.  相似文献   
15.
This paper reports an investigation on the structure-properties correlation of trivalent metal oxide (Al2O3)-doped V2O5 ceramics synthesized by the melt-quench technique. XRD patterns confirmed a single orthorhombic V2O5 phase formation with increasing strain on the doping of Al2O3 in place of V2O5 in the samples estimated by Williamson-Hall analysis. FTIR and Raman investigations revealed a structural change as [VO5] polyhedra converts into [VO4] polyhedra on the doping of Al2O3 into V2O5. The optical band gap was found in a wide semiconductor range as confirmed by UV–visible spectroscopy analysis. The thermal and conductivity behavior of the prepared samples were studied using thermal gravimetric analysis (TGA) and impedance analyzer, respectively. All the prepared ceramics exhibit good DC conductivity (0.22–0.36 Sm-1) at 400 ?C. These materials can be considered for intermediate temperature solid oxide fuel cell (IT-SOFC)/battery applications due to their good conductivity and good thermal stability.  相似文献   
16.
《Ceramics International》2022,48(8):10733-10740
Multivalent ion-conducting ceramics are required for the manufacture of high-safety, high-capacity rechargeable batteries. However, the low ionic conductivity of solid electrolytes and discrepancies in the thermal expansion between the battery components limit their widespread application. Furthermore, anisotropic thermal expansion in crystals during battery manufacturing and the charge-discharge cycles causes the formation of microcracks, which degrade the battery performance. The physical properties of ceramic materials with anisotropic crystal structures can be modified by varying the crystallographic orientation of their grains. In this study, a co-precipitation approach was used to synthesize an Mg2+-conducting (Mg0.1Hf0.9)4/3.8Nb(PO4)3 solid electrolyte, and the grain orientation in the bulk sample was controlled using strong magnetic fields during the slip casting process. The results showed that inducing an orientation along the c-axis enhanced the apparent ionic conductivity of the bulk sample. It was also observed that (Mg0.1Hf0.9)4/3.8Nb(PO4)3 crystal has a negative volumetric thermal expansion despite a positive linear thermal expansion along its c-axis. By adjusting the c-axis orientation of the grains, (Mg0.1Hf0.9)4/3.8Nb(PO4)3 electrolytes with negative or positive linear thermal expansion coefficient have been produced. The findings of this study suggest that solid-electrolytes with negative, positive, or zero linear thermal expansion can be produced to create more compatible and higher-performance solid-state devices.  相似文献   
17.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
18.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
19.
选择了几份典型的外墙外保温系统标准,通过对这几份标准中胶粘剂和抹面胶浆的成型和检测方法的比较,分析了现有检测技术的优劣,并结合工作实践提出了建议。  相似文献   
20.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号