首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218199篇
  免费   28201篇
  国内免费   25374篇
电工技术   19254篇
技术理论   8篇
综合类   14829篇
化学工业   46065篇
金属工艺   10590篇
机械仪表   12979篇
建筑科学   10640篇
矿业工程   2784篇
能源动力   7156篇
轻工业   14829篇
水利工程   2645篇
石油天然气   4332篇
武器工业   2324篇
无线电   31808篇
一般工业技术   33299篇
冶金工业   5714篇
原子能技术   3553篇
自动化技术   48965篇
  2024年   720篇
  2023年   3750篇
  2022年   5743篇
  2021年   8205篇
  2020年   7907篇
  2019年   7099篇
  2018年   6525篇
  2017年   8662篇
  2016年   9392篇
  2015年   10750篇
  2014年   10955篇
  2013年   14291篇
  2012年   16342篇
  2011年   18900篇
  2010年   13620篇
  2009年   13581篇
  2008年   14602篇
  2007年   16296篇
  2006年   15395篇
  2005年   13361篇
  2004年   11187篇
  2003年   8953篇
  2002年   6903篇
  2001年   5181篇
  2000年   4385篇
  1999年   3538篇
  1998年   2928篇
  1997年   2336篇
  1996年   1781篇
  1995年   1534篇
  1994年   1394篇
  1993年   1029篇
  1992年   829篇
  1991年   699篇
  1990年   597篇
  1989年   447篇
  1988年   318篇
  1987年   199篇
  1986年   193篇
  1985年   243篇
  1984年   227篇
  1983年   156篇
  1982年   219篇
  1981年   100篇
  1980年   105篇
  1979年   26篇
  1978年   15篇
  1977年   24篇
  1976年   17篇
  1959年   19篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
31.
孙搏  付淑军  陈桂良  李丽 《金属学报》2021,26(10):1095-1102
药物相互作用改变了剂量效应关系,可能会降低疗效或增加毒性,是临床应用中合并用药治疗时重要的考虑因素。预测具有临床意义的药物相互作用是药物研发过程中获益风险评估的重要环节。本文概述了药物研发过程中药物相互作用研究的目的和意义,体内和体外研究的主要内容;梳理分析了2020年国家药品监督管理局(National Medical Products Administration, NMPA)和美国食品药品监督管理局(Food and Drug Administration, FDA)批准上市的新药药物相互作用研究情况,旨在为我国药物研发过程中药物相互作用研究及其监管审评提供参考。  相似文献   
32.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
33.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
34.
Individually, photoredox catalysis (PC) and photodynamic therapy (PDT) are well-established concepts that have experienced a remarkable resurgence in recent years, leading to significant progress in organic synthesis for PC and clinical approval of anticancer drugs for PDT. But, very recently, new photoredox catalyst systems based on Ir(III) and Ru(II) complexes have garnered significant interest because they can simultaneously be used as PDT agents apart from their demonstrated PC activity. This highlight discusses the unique PC behavior of emerging Ir(III)- and Ru(II)-based systems while also examining their potential PDT activity in cancer treatment.  相似文献   
35.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
36.
《工程爆破》2022,(4):78-84
介绍了在包头市某工程实施管道穿越黄河施工中,采用爆破法处理卡钻的经验。针对深水环境条件及钻杆内径小不宜采用集团装药的条件,确定采用"小直径爆破筒,钻杆内部装药"的爆破方案,阐述了爆破设计及施工注意事项。可供类似工程参考。  相似文献   
37.
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.  相似文献   
38.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
39.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
40.
《Ceramics International》2022,48(1):769-775
Brittle materials generally exhibit size effects, and the mechanical properties of these materials degrade significantly with an increase in size. However, the mathematical law governing the attenuation degree of mechanical properties with the increase in size is still unknown. In this study, maximum loads of differently sized ceramic test strips were subjected to three point bending tests under two working conditions of equal spans and span amplifications, respectively. Subsequently, the theoretical maximum loads of materials were calculated using the finite element method (FEM). By calculating the difference between the calculated values and the actual maximum loads, the attenuation of mechanical properties of ceramic samples were observed. The results show that the theoretical mechanical properties and the performance attenuation caused by the size effect tend to increase according to the following equation: y=ax3+bx2+cx+d. Therefore, mechanical properties and performance attenuation of any sample exhibiting a size within the experimental range can be predicted by a mathematical law, which was obtained through mechanical tests results of four samples with different sizes. The obtained mathematical law holds great significance for predicting the mechanical properties of materials under size effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号