首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19980篇
  免费   1840篇
  国内免费   937篇
电工技术   641篇
综合类   1283篇
化学工业   6409篇
金属工艺   1714篇
机械仪表   544篇
建筑科学   145篇
矿业工程   433篇
能源动力   222篇
轻工业   2385篇
水利工程   23篇
石油天然气   286篇
武器工业   128篇
无线电   2443篇
一般工业技术   2577篇
冶金工业   2844篇
原子能技术   140篇
自动化技术   540篇
  2024年   62篇
  2023年   542篇
  2022年   660篇
  2021年   687篇
  2020年   777篇
  2019年   681篇
  2018年   629篇
  2017年   802篇
  2016年   709篇
  2015年   649篇
  2014年   1018篇
  2013年   1023篇
  2012年   1395篇
  2011年   1472篇
  2010年   1071篇
  2009年   1198篇
  2008年   898篇
  2007年   1354篇
  2006年   1207篇
  2005年   1007篇
  2004年   862篇
  2003年   785篇
  2002年   601篇
  2001年   506篇
  2000年   449篇
  1999年   362篇
  1998年   250篇
  1997年   206篇
  1996年   164篇
  1995年   152篇
  1994年   110篇
  1993年   76篇
  1992年   92篇
  1991年   86篇
  1990年   83篇
  1989年   72篇
  1988年   15篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   8篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有10000条查询结果,搜索用时 672 毫秒
21.
Metal injection moulding (MIM) is an established process for high volume production of complex shaped metallic parts using commercially available feedstocks. The characteristics of parts after moulding, debinding, and sintering cannot be simply predictable from raw materials because the properties get altered with the process parameters and the corresponding levels of porosity during processing steps. In this study, physical properties, microstructure, and mechanical properties of the MIM parts have been characterised to understand the evolution of strength during various steps in MIM processing. Feedstocks with different binder loading show a considerable difference in physical as well as mechanical characteristics. During sintering of parts which have solid loading of grinding sludge, simultaneous in situ reduction and densification takes place, whereas only densification occurs in carbonyl iron parts. It is, therefore, possible to make complex shaped parts of different levels of porosity from downgraded shop floor metallic waste.  相似文献   
22.
Microwave lignite drying with assistance of biomass-derived char was addressed and effect of bio-char on drying rate and energy consumption was investigated in this work. Effective diffusion coefficient and activation energy for the drying process were also analyzed. The results indicated the drying process was largely dependent on the variation of sample temperature. Bio-char originated from pine wood was most favorable for lignite drying, considering its better promoting effect and advanced security. There existed an optimal bio-char addition ratio for drying process at different power. The corresponding optimal ratio was 10% at 231?W and 15% at 385?W, at which the biggest drying rate and the least energy consumption were reached. It was compared lignite drying initiated at 385?W was better for energy conservation. Effective diffusivity was improved and activation energy was simultaneously reduced, with the addition of bio-char. The minimum activation energy was 15.54?W?·?g?1, which was gained at bio-char addition ratio of 10%. The results revealed the effect of bio-char on depressing activation energy could rival that of metal-based additives. The drying process with assistance of microwave and bio-char could present technical and economical benefits on lignite upgrading.  相似文献   
23.
Structures and properties of myofibrillar protein gel prepared at different power (300–800 W) were evaluated. Amino acid analysis demonstrated that changes in microwave power did not alter primary structure of gel. However, an increase in microwave power could change higher structures of gel. As microwave power increased, α-helix content decreased and β-sheet content increased. Increased microwave power probably facilitated protein to unfold and expose the internal groups, causing surface hydrophobicity and the formation of disulphide bonds were enhanced, which indicated changes in tertiary and quaternary structures of protein. At 500 W, gel had the best ultrastructure where surface morphology, springiness and water holding capacity reached the optimum. Our findings suggested that microwave at an appropriate power (500 W) could change higher structures of myofibrillar protein gel to achieve desired processing and quality protein gel characteristics.  相似文献   
24.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
25.
The PbClxS1-x and Pb1-xBixS (x? =?0–0.05) bulks were fabricated with a facile method of hydrothermal synthesis and microwave sintering, and the effect of anionic and cationic donors on the thermoelectric performance of PbS was investigated. Although Cl? and Bi3+ both effectively improved the thermoelectric properties of n-type PbS, more excellent thermoelectric performance was obtained from Cl? doped samples because of higher electrical property and lower thermal conductivity at higher temperature (T? >?600?K). The thermoelectric figure of merit (ZT) reaches 1.04 for PbCl0.015S0.985 at 800?K and increases with temperature increasing without sign of saturation, which is probably the highest value ever reported for single-phase polycrystalline n-type PbS. The results also indicate that the hydrothermal synthesis and microwave sintering can realize anion doping as well as cation doping for n-type PbS at low cost, and PbS should be a robust alternative for PbTe thermoelectric materials.  相似文献   
26.
SrLa[Ga1−x(R0.5Ti0.5)x]O4 (R = Mg, Zn) ceramics were prepared by a standard solid state sintering method. The single-phase ceramics with K2NiF4-type layered perovskite structure and I4/mmm space group were obtained, indicating that SrLa(R0.5Ti0.5) and SrLaGaO4 can form the unlimited solid solutions. With increasing x for = Mg and Zn, εr increases monotonously, the Qf value first increases and then decreases, while τf increases from a negative to a positive value. The optimized microwave dielectric properties were obtained as following: εr = 23.3, Qf = 89 400 GHz, τf = −0.8 ppm/°C for SrLa[Ga0.6(Mg0.5Ti0.5)0.4]O4 and εr = 23.3, Qf = 76 200 GHz, τf = 0.2 ppm/°C for SrLa[Ga0.7(Zn0.5Ti0.5)0.3]O4, indicating that the present solid solution ceramics are the promising candidates as microwave resonator materials for the telecommunication applications.  相似文献   
27.
本研究分析了钢铁企业焦化和烧结两个重点工序中烟气污染物排放现状和钢铁行业当前的环保政策。对焦化及烧结烟气污染物的排放特征进行了分析,并通过对比燃煤电厂烟气特点,提出可以综合电厂烟气治理模式和自身特点改进的技术路线。结合某大型国有钢铁企业的脱硫脱硝装备对其环保现状进行了分析。针对焦化和烧结工序的典型污染物硫、硝、尘现有的源头减排、过程控制及末端处理技术,分析其优缺点。进而提出了3条可实现烟气污染物超低排放的技术路线,即半干法脱硫耦合选择性催化还原脱硝、半干法/湿法耦合臭氧氧化脱硝、活性焦脱硫脱硝一体化技术,重点介绍了这些技术在某大型钢铁企业的应用实践及应用效果。并基于全过程耦合技术,分别在焦化和烧结工序中提出了多污染物协同去除技术及应用,即焦炉低氮燃烧技术耦合末端活性焦多污染物协同控制技术、烧结烟气循环技术耦合末端活性焦多污染物协同控制技术。最后结合几种技术路线的应用实践,对未来钢铁产业的烧结及焦化工序超低排放技术的选择提出合理化建议。  相似文献   
28.
29.
以硅渣和玻璃粉为原料,采用粉体直接烧结法制备多孔材料,研究了烧结温度(700~900℃)、烧结时间(15~120min)和升温速率(10~100℃·min^-1)对多孔材料表观密度、气孔率、物相组成、抗压强度的影响。结果表明:气孔结构均匀性随烧结温度的升高而降低;表观密度随烧结温度的升高先减小后增大,随保温时间的延长而增大,随升温速率的增大而减小,气孔率的变化趋势与表观密度的相反;多孔材料的主要物相为玻璃相和硅、SiC、SiO2、Ca2Al2SiO7等结晶相,且结晶度随烧结温度的升高而降低;抗压强度随烧结温度的升高呈先增大后减小的趋势;当烧结温度为750℃,升温速率为30℃·min^-1,烧结时间为30 min时,多孔材料的主晶相为硅和Ca2Al2SiO7,抗压强度最大(1.60MPa),表观密度为0.43g·cm^-3,气孔率为80%。  相似文献   
30.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号