首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21236篇
  免费   2277篇
  国内免费   1726篇
电工技术   460篇
综合类   1590篇
化学工业   7594篇
金属工艺   1172篇
机械仪表   606篇
建筑科学   2478篇
矿业工程   421篇
能源动力   419篇
轻工业   4015篇
水利工程   515篇
石油天然气   227篇
武器工业   82篇
无线电   995篇
一般工业技术   2984篇
冶金工业   840篇
原子能技术   166篇
自动化技术   675篇
  2024年   91篇
  2023年   354篇
  2022年   526篇
  2021年   683篇
  2020年   586篇
  2019年   577篇
  2018年   545篇
  2017年   737篇
  2016年   623篇
  2015年   719篇
  2014年   1086篇
  2013年   1222篇
  2012年   1527篇
  2011年   1597篇
  2010年   1205篇
  2009年   1348篇
  2008年   1099篇
  2007年   1458篇
  2006年   1317篇
  2005年   1166篇
  2004年   940篇
  2003年   872篇
  2002年   789篇
  2001年   706篇
  2000年   581篇
  1999年   491篇
  1998年   362篇
  1997年   343篇
  1996年   264篇
  1995年   228篇
  1994年   190篇
  1993年   156篇
  1992年   191篇
  1991年   168篇
  1990年   145篇
  1989年   119篇
  1988年   33篇
  1987年   25篇
  1986年   21篇
  1985年   35篇
  1984年   28篇
  1983年   17篇
  1982年   25篇
  1981年   5篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   4篇
  1975年   5篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
11.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
12.
The main drawback of bioglasses is their restricted use in load bearing applications and the consequent need to develop stronger glassy materials. This has led to the consideration of oxynitride glasses for numerous biomedical applications. This paper investigated two different types of glasses at a constant cationic ratio, with and without nitrogen (a N containing and a N-free glass composition) to better understand the effect of N on the biological properties of glasses. The results revealed that the addition of N increased the glass transition temperature, isoelectric point (IEP) and slightly increased wettability. Moreover, compared to N including glass, N-free glass exhibited better anti-bacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), two key bacteria that infect implants. In summary, these in vitro results indicated that amine functional groups existing in N containing glasses which are missing in N-free glasses, caused a slight difference in wetting behavior and a more obvious change in isoelectric point and in bacterial response. N-free glasses exhibited better inhibitory results both against E. coli and S. aureus compared to N including glass suggesting that oxygen rich glasses should be further studied for their novel antibacterial properties.  相似文献   
13.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
14.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
15.
为了建立适用于书画打印宣纸印刷质量的预测模型,本研究测量了14种书画打印宣纸的粗糙度、白度、不透明度、定量、光泽度和针对宣纸特别设定的帘纹深浅以及帘纹疏密度等表面物理参量,并在相同条件下,使用喷墨打印设备输出并测量印品色度值,利用总变差模型构建去除帘纹色差的测定方法,得到与人眼视觉特征相符的色差。运用GRNN广义回归神经网络结合书画打印宣纸表面物理参量与宣纸去帘纹后的色差值,建立预测模型。结果表明,该模型能够在仅测量书画打印宣纸表面物理参量的情况下,便能较为准确地预测书画打印宣纸印刷质量,为书画打印宣纸印刷前的选纸工作提供指导依据。  相似文献   
16.
Abstract

Different drying methods (spray drying (SD), vacuum drying (VD), microwave vacuum drying (MVD), and infrared vacuum drying (IFVD)) were applied in order to compare the hygroscopicity behavior of chicken powders. The hygroscopicity curves and glass transition temperature were used to evaluate the influence of ambient humidity and temperature on moisture absorption of powders. The results showed that the chicken powder dried by MVD had the lowest moisture absorption, followed by IFVD, VD, and SD. The hygroscopicity of SD chicken powders was different from other three kinds of chicken powders due to the physical properties of particles and the changes of protein secondary structure as detected by the Fourier transform-infrared spectrometer. For the three vacuum drying methods, the difference of protein secondary structure was the main reason of differences in hygroscopicity. Although MVD chicken powders were slightly inferior to SD chicken powders in taste, MVD chicken powders were the best in terms of smell and color as suggested by instrumental sensory parameter evaluations. It was found that MVD had a positive effect on reducing moisture absorption and maintaining sensory quality of chicken powders.  相似文献   
17.
ABSTRACT

In this study, electrocoagulation (EC) was used to determine the optimum conditions on the basis of maximum chemical oxygen demand (COD) and color removal. At the optimum conditions chlorophenols (CPs), biological oxygen demand and total organic carbon (TOC) were determined. The biodegradability of wastewater was increased significantly with 63% COD, 98% color, 61% TOC and overall 65.51% reductions in CPs. Further, the electro-coagulated sludge was characterized by using different analytical techniques to assist the physicochemical and elemental phases, to find-out better management option, reusability for plant growth and safe disposal. Additionally, aluminum content (70.62%) was successfully recovered from sludge.  相似文献   
18.
In this work, HA/bioactive glass Functionally Graded Materials (FGMs) are obtained for the first time by means of Spark Plasma Sintering (SPS). Two series of highly dense 5 layered products, namely FGMS1 and FGMS2, are prepared under optimized SPS conditions, i.e. 1000 °C/2 min/16 MPa and 800 °C/2 min/50 MPa, respectively, using a die with varying cross section.Results arising from XRD, SEM, mechanical and biological characterization in SBF, evidence that lower temperature and higher-pressure levels used for FGMS2 samples provide better materials in terms of microstructure, compactness, hardness, elastic modulus and in vitro bioactivity. Indeed, a fully sintered and crack-free microstructure with no crystallisation at the top layer (100% bioactive glass) is correspondingly produced.The obtainment of such FGMs is quite promising, since it permits to vary the relative volume fractions of the two constituents and, consequently, tailor the biological response for specific clinical applications.  相似文献   
19.
The brittleness of MoSi2 ceramic and the thermal mismatch between MoSi2 coating and C / C composite lead to brittle cracking of the coating at 900−1200 °C. This problem has been overcome in this studyby introducing submicron-SiB6 into the coating. The pre-fabricated cracks and a kinetics model of hot-pressed SiB6-MoSi2 ceramic could quantitatively predict the glass growth and crack healing. As expected, enhancing temperature and SiB6 content increased the growth rate of the borosilicate glass and the crack healing ability of MoSi2 ceramic, which was ascribed to the lower oxidation activation energy and larger specific surface area of submicron-SiB6. For the plasma sprayed coating, SiB6 with submicron structure was benefit for cracking inhibition and formation of borosilicate glass during oxidation, reducing the oxygen permeability and the consumption of inner coating. Hence, the 15 % SiB6-MoSi2 coatings raised the protection times to 84 and 120 h at 900 and 1200 °C respectively, presenting favorable oxidation protective performance.  相似文献   
20.
为研究超声换能器结构参数对聚合物超声塑化过程黏弹性生热的影响,首先确定超声黏弹性生热系统的组成,进行纵振超声换能器结构设计;然后分析超声黏弹性生热过程及超声黏弹性生热原理;最后采用单一变量法分析超声换能器的主要结构参数对其纵振频率及工具头前端质点最大振幅的影响,将其实际输出的纵振激励加载于熔融聚合物,研究其结构参数对聚合物超声黏弹性生热过程及达到聚合物玻璃化转变温度所用时间的影响。结果表明,随纵振激励作用时间的增加,聚合物温度非线性升高;放大比对聚合物温度变化影响最大,前盖板厚度和工具头长度次之,影响最小的是变幅杆长度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号