首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96128篇
  免费   11627篇
  国内免费   3644篇
电工技术   7422篇
技术理论   3篇
综合类   4638篇
化学工业   18286篇
金属工艺   6531篇
机械仪表   3608篇
建筑科学   7437篇
矿业工程   2304篇
能源动力   7065篇
轻工业   14423篇
水利工程   2201篇
石油天然气   3744篇
武器工业   525篇
无线电   6989篇
一般工业技术   10783篇
冶金工业   5457篇
原子能技术   1020篇
自动化技术   8963篇
  2024年   403篇
  2023年   2111篇
  2022年   4046篇
  2021年   5810篇
  2020年   3772篇
  2019年   3577篇
  2018年   3391篇
  2017年   4186篇
  2016年   5278篇
  2015年   5760篇
  2014年   7063篇
  2013年   6836篇
  2012年   6292篇
  2011年   5728篇
  2010年   4408篇
  2009年   4384篇
  2008年   3823篇
  2007年   5594篇
  2006年   5570篇
  2005年   4635篇
  2004年   3422篇
  2003年   3102篇
  2002年   2434篇
  2001年   1819篇
  2000年   1554篇
  1999年   1123篇
  1998年   770篇
  1997年   693篇
  1996年   614篇
  1995年   437篇
  1994年   437篇
  1993年   304篇
  1992年   264篇
  1991年   214篇
  1990年   219篇
  1989年   162篇
  1988年   111篇
  1987年   107篇
  1986年   90篇
  1985年   109篇
  1984年   97篇
  1983年   66篇
  1982年   62篇
  1981年   51篇
  1980年   57篇
  1966年   25篇
  1964年   36篇
  1962年   65篇
  1959年   27篇
  1955年   24篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
12.
13.
Limiting current density at different temperatures, backpressures, and balance gases can be used to separate molecular diffusion resistance, Knudsen diffusion resistance and local transport resistance of membrane electrode assembly (MEA). However, the measurement of limiting current density has no unified protocol. The diverse choices in the literature, either in the control of current or voltage or in the atmosphere like relative humidity and O2 concentrations, make it difficult to compare the results and identify the true bottleneck hindering the mass transport. In this work, the current-voltage curves obtained by current scanning/stepping and voltage scanning/stepping methods under dilute O2 of different concentrations and a wide range of relative humidity were measured and analyzed systematically. It is found that the voltage stepping method is superior to the other three ways of control for the reliable determination of the limiting current density. Aided with simultaneous electrochemical impedance spectroscopy measurement, the limiting current density can be determined with pinpoint accuracy. When the limiting current density is just used to qualitatively evaluate different MEA, the voltage scanning method can be used instead for its high time efficiency. The selection of the atmosphere also plays an important role in suppressing the distortion from excessive water and reducing the spurious contribution from proton conduction resistance. It is found that O2 concentrations at 0.5 vol% and relative humidity at 90% can give the best estimation of O2 transport resistance in membrane electrode assembly.  相似文献   
14.
《Ceramics International》2022,48(6):8325-8330
In this work, we propose a facile approach to fabricate Ti4+-doped Li3V2(PO4)3/C (abbreviated as C-LVTP) nanofibers using an electrospinning route followed by a high temperature treatment. In this designed nanocomposite, the ultrafine LVTP dots are homogeneously dispersed into one-dimensional carbon nanofibers and the Ti4+ doping does not destroy the crystal structure of monoclinic Li3V2(PO4)3. Compared to the undoped Li3V2(PO4)3/C (abbreviated as C-LVP), the as-fabricated C-LVTP fibers present higher reversible capacity, superior high-rate capability as well as better cyclic property. Especially, the C-LVT7%P cathode delivers not only high capacities of 187.2 and 160.3 mAh g?1 at 0.5 and 10 C respectively, but also stable cyclic property with the reversible capacity of 135.8 mAh g?1 at 20 C following 500-cycle spans. The good battery characteristics of C-LVT7%P can be mainly ascribed to Ti4+ doping, which can increase the electrical conductivity and Li+ diffusion coefficient.  相似文献   
15.
《Ceramics International》2021,47(22):31590-31596
In this study, the high ferroelectric hysteresis loss of (Pb0·93La0.07)(Zr0·82Ti0.18)O3 (PLZT 7/82/18) antiferroelectric (AFE) ceramics was reduced by employing a combinatorial approach of Mn acceptor doping followed by thick film fabrication via an aerosol deposition (AD) process. The grains of the as-deposited PLZT 7/82/18 AFE AD thick films were grown by thermal annealing at 550 °C to enhance their electrical properties. Investigation of the electrical properties revealed that Mn-doping results in improved dielectric and ferroelectric properties, increased dielectric breakdown strength (DBS), and energy-storage properties. The Mn-doped PLZT AFE AD films possess a frequency-independent high dielectric constant (εr ≈ 660) with low dielectric loss (tan δ ≈ 0.0146), making them suitable candidates for storage capacitor applications. The bipolar and unipolar polarization vs. electric field (P-E) hysteresis loops of PLZT 7/82/18 AFE AD thick films were found to be slimmer than those of their bulk form (double hysteresis) with significantly reduced ferroelectric hysteresis loss, which is attributed to the AD-induced mixed grain structure. The Mn-doped PLZT 7/82/18 AFE AD thick films exhibited a low remnant polarization (Pr ≈ 9.22 μC/cm2) at a high applied electric field (~2750 kV/cm). The energy-storage density and energy efficiency of the Mn-doped PLZT AFE AD thick films were calculated from unipolar P-E hysteresis loops and found to be ~38.33 J/cm3 and ~74%, respectively.  相似文献   
16.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
17.
Piperine is an alkaloid that has extensive pharmacological activity and impacts other active substances bioavailability due to inhibition of CYP450 enzymes, stimulation of amino acid transporters and P-glycoprotein inhibition. Low solubility and the associated low bioavailability of piperine limit its potential. The combination of piperine with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) causes a significant increase in its solubility and, consequently, an increase in permeability through gastrointestinal tract membranes and the blood–brain barrier. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) were used to characterize interactions between piperine and HP-β-CD. The observed physicochemical changes should be combined with the process of piperine and CD system formation. Importantly, with an increase in solubility and permeability of piperine as a result of interaction with CD, it was proven to maintain its biological activity concerning the antioxidant potential (2,2-diphenyl-1-picryl-hydrazyl-hydrate assay), inhibition of enzymes essential for the inflammatory process and for neurodegenerative changes (hyaluronidase, acetylcholinesterase, butyrylcholinesterase).  相似文献   
18.
19.
为研究金针菇多糖(polysaccharide from Flammulina velutipes,FVP)对微冻大黄鱼及鱼片在贮藏期间肌原纤维蛋白性质的变化及水分分布的影响,实验分别选用0.03、0.06、0.09 g/L FVP浸渍处理大黄鱼和鱼片,以无菌水处理为对照组,分析微冻贮藏期间样品的感官指标得分、总挥发性盐基氮含量、总巯基含量、Ca2+-ATPase活性、蛋白流变学性质以及水分迁移变化规律。结果表明:FVP可有效抑制整鱼总挥发性盐基氮含量上升和感官得分的下降;减缓整鱼及鱼片在微冻过程中总巯基含量、Ca2+-ATPase活性下降和水分流失;此外FVP还能够延缓大黄鱼因腐败而出现的蛋白凝胶能力减弱。在本实验选取的多糖浓度范围内,0.09 g/L FVP处理组保鲜效果较强。该研究结果可为FVP用于水产品贮运保鲜提供理论参考。  相似文献   
20.
Hydrogen production by biogas conversion represent a promising solution for reduction of fossil CO2 emissions. In this work, a detailed techno-economic analysis was performed for decarbonized hydrogen production based on biogas conversion using calcium and chemical looping cycles. All evaluated concepts generate 100,000 Nm3/h high purity hydrogen. As reference cases, the biogas steam reforming design without decarbonization and with CO2 capture by gas-liquid chemical absorption were also considered. The results show that iron-based chemical looping design has higher energy efficiency compared with the gas-liquid absorption case by 2.3 net percentage points as well as a superior carbon capture rate (99% vs. 65%). The calcium looping case shows a lower efficiency than chemical scrubbing, with about 2.5 net percentage points, but the carbon capture rate is higher (95% vs. 65%). The hydrogen production cost increases with decarbonization, the calcium looping shows the most favourable situation (37.14 €/MWh) compared to the non-capture steam reforming case (33 €/MWh) and MDEA and iron looping cases (about 42 €/MWh). The calcium looping case has the lowest CO2 avoidance cost (10 €/t) followed by iron looping (20 €/t) and MDEA (31 €/t) cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号