首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3762篇
  免费   385篇
  国内免费   35篇
电工技术   20篇
综合类   70篇
化学工业   2724篇
金属工艺   72篇
机械仪表   24篇
建筑科学   6篇
矿业工程   16篇
能源动力   53篇
轻工业   42篇
石油天然气   26篇
武器工业   4篇
无线电   227篇
一般工业技术   869篇
冶金工业   16篇
原子能技术   3篇
自动化技术   10篇
  2024年   17篇
  2023年   77篇
  2022年   34篇
  2021年   122篇
  2020年   150篇
  2019年   149篇
  2018年   157篇
  2017年   154篇
  2016年   133篇
  2015年   120篇
  2014年   167篇
  2013年   271篇
  2012年   314篇
  2011年   313篇
  2010年   275篇
  2009年   274篇
  2008年   234篇
  2007年   223篇
  2006年   283篇
  2005年   207篇
  2004年   199篇
  2003年   124篇
  2002年   88篇
  2001年   31篇
  2000年   21篇
  1999年   19篇
  1998年   7篇
  1997年   9篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
排序方式: 共有4182条查询结果,搜索用时 66 毫秒
101.
Shape‐memory polyurethane/multiwalled carbon nanotube (SMP–MWNT) composites with various multiwalled carbon nanotube (MWNT) contents were synthesized, and the corresponding SMP–MWNT fibers were prepared by melt spinning. The influence of the MWNT content on the spinnability, fracture morphology, thermal and mechanical properties, and shape‐memory behavior of the shape‐memory polymer was studied. The spinning ability of SMP–MWNTs decreased significantly with increasing MWNT content. When the MWNT content reached 8.0 wt %, the fibers could not be produced because of the poor rheological properties of the composites. The melt‐blending, extrusion, and melt‐spinning processes for the shape‐memory fiber (SMF), particularly at low MWNT contents, caused the nanotubes to distribute homogeneously and preferentially align along the drawing direction of the SMF. The crystallization in the SMF was promoted at low MWNT contents because it acted as a nucleation agent. At high MWNT contents, however, the crystallization was hindered because the movement of the polyurethane chains was restricted. The homogeneously distributed and aligned MWNTs preserved the SMF with high tenacity and initial modulus. The recovery ratio and recovery force were also improved because the MWNTs helped to store the internal elastic energy during stretching and fixing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
102.
Two types of SBS/OMMT composites are prepared by melt blending using a twin‐screw extruder. An X‐ray diffractometer indicates that polymer chains have intercalated into the gallery of the clay. It is shown in TEM photos that the thickness of the layer aggregate in the SBS1301 matrix is approximately 200 Å, but in the SBS4402 matrix the size of the filler particle is in micrometers. When SBS1301 is intermingled into SBS4402/OMMT, the particle size is reduced obviously. The tensile strength and elongation at break of the nanocomposite, SBS1301/OMMT, increase with the addition of OMMT; and when addition is 5phr, they achieve maximum. A small content of OMMT (less than 5phr) can prevent the deterioration of the mechanical properties of the SBS1301/MMT. In addition, a small content of SBS4402 (less than 20 wt %) can improve the mechanical properties of the SBS1301/OMMT composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 146–152, 2005  相似文献   
103.
Aluminum nitride (AlN)–silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g−1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich phases. The formation of homogeneous solid solution proceeded with increasing nitridation temperature from 1400° up to 1500°C. The specific surface area of the AlN–SiC powder nitrided at 1500°C for 3 h was 19.5 m2·g−1, whereas the primary particle size (assuming spherical particles) was estimated to be ∼100 nm.  相似文献   
104.
Nitrile rubber (NBR)–clay nanocomposites were prepared by co‐coagulating the NBR latex and clay aqueous suspension. Transmission electron microscopy showed that the silicate layers of clay were dispersed in the NBR matrix at the nano level and had a planar orientation. X‐ray diffraction indicated that there were some nonexfoliated silicate layers in the NBR–clay nanocomposites. Stress–strain curves showed that the silicate layers generated evident reinforcement, modulus, and tensile strength of the NBR–clay nanocomposites, which were significantly improved with an increase in the amount of clay, and strain‐at‐break was higher than that of the gum NBR vulcanizate when the amount of clay was more than 5 phr. The NBR–clay nanocomposites exhibited an excellent gas barrier property; the reduction in gas permeability in the NBR–clay nanocomposites can be described by Nielsen's model. Compared with gum NBR vulcanizate, the oxygen index of the NBR–clay nanocomposites increased slightly. The feasibility of controlling rubber flammability via the nanocomposite approach needs to be evaluated further. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3855–3858, 2003  相似文献   
105.
Q. Yuan 《Polymer》2006,47(12):4421-4433
The micromechanism of plastic deformation during impact loading of polypropylene-clay nanocomposites is examined and compared with the unreinforced polypropylene under identical conditions of processing to underscore the determining role of clay. The addition of clay to polypropylene increases the impact strength in the temperature range of 0 to +70 °C. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM) techniques provided an understanding of the micromechanism of plastic deformation in terms of the response of the polymer matrix, nucleating capability of the reinforcement, crystal structure, percentage crystallinity, lamellae thickness, and particle-matrix interface. The enhancement of toughness on reinforcement of polypropylene with nanoclay is associated with change in the primary mechanism of plastic deformation from crazing and vein-type in neat polypropylene to microvoid-coalescence-fibrillation process in the nanocomposite.  相似文献   
106.
In this article nano‐sized CdS crystal embedded in a PEO matrix was successfully prepared by a complex transformation method that is universal for preparing nanosized compounds containing transition metals. The size of embedded CdS particles was in the nanoscale from 2 to 10 nm determined by X‐ray diffusion. The nanosized CdS displayed the expected blue shift of the onset absorbance in the UV spectrum. The amount of blue shift depends upon the dipping time of the PEO–cadmium complex film in a sodium sulfide solution as well as its concentration. The most effective means for adjusting the size of CdS nanocrystals is to change the ratio of the oxygen along with the PEO chain to the cadmium ion in the complex film. The alkali salt in the film would contribute to the conductivity of the composite film. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1263–1268, 2002; DOI 10.1002/app.10459  相似文献   
107.
Ethylene–vinyl acetate (EVA) copolymers/clay nanocomposites, prepared by using nonreactive organophilic clay and reactive organophilic clay, were characterized by X‐ray diffraction and by high‐resolution transmission electron microscopy. The influence of gamma irradiation on the structure and properties of the pure EVA and EVA/clay nanocomposites was systematically investigated. In the presence of gamma radiation, the clay can effectively restrain the increase of the storage modulus of EVA/clay nanocomposites, which was supported by dynamical mechanical analysis. Gamma irradiation had almost no effect on the thermal properties of EVA/clay nanocomposites by using nonreactive organophilic clay, but it obviously improved the thermal stability of EVA/clay nanocomposites by using reactive organophilic clay. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2532–2538, 2005  相似文献   
108.
The preparation and properties of poly(4‐methyl‐1‐pentene) (PMP)/clay nano‐composites are described for the first time. The effect of clay modification and compatibilizer on the formation and properties of the nanocomposites is studied. Layered silicates modified with two types of quaternary ammonium salts are used. The X‐ray diffraction results indicate intercalation of the polymer into the intergallery spacing of the clay. Thermogravimetric analysis shows a delay in the degradation process. Dynamic mechanical analysis shows an increase in the storage modulus for the nanocomposites. The use of compatibilizer containing maleic anhydride and acrylic ester groups is explored. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3233–3238, 2003  相似文献   
109.
熔体插层制备硅橡胶/蒙脱土纳米复合材料的性能研究   总被引:4,自引:0,他引:4  
通过熔体插层成功制备了硅橡胶/蒙脱土纳米复合材料,通过XRD和SEM分析可知,在所选择的两步工艺务件下。蒙脱土被硅橡胶分子链插层剥离。获得剥离型的纳米复合材料。同时,测试了其力学性能和耐热性能。所得到的复合物的性能较纯硅橡胶有很大的提高,且与气相法白炭黑填充体系的性能相当。并且研究了硅烷偶联剂对填料-硅橡胶之间的增强作用。  相似文献   
110.
Polypropylene (PP) nanocomposites were prepared by melt intercalation in an intermeshing corotating twin‐screw extruder. The effect of molecular weight of PP‐MA (maleic anhydride‐ modified polypropylene) on clay dispersion and mechanical properties of nanocomposites was investigated. After injection molding, the tensile properties and impact strength were measured. The best overall mechanical properties were found for composites containing PP‐MA having the highest molecular weight. The basal spacing of clay in the composites was measured by X‐ray diffraction (XRD). Nanoscale morphology of the samples was observed by transmission electron microscopy (TEM). The crystallization kinetics was measured by differential scanning calorimetry (DSC) and optical microscopy at a fixed crystallization temperature. Increasing the clay content in PP‐ MA330k/clay, a well‐dispersed two‐component system, caused the impact strength to decrease while the crystallization kinetics and the spherulite size remained almost the same. On the other hand, PP/PP‐MA330k/clay, an intercalated three‐component system containing some dispersed clay as well as the clay tactoids, showed a much smaller size of spherulites and a slight increase in impact strength with increasing the clay content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1562–1570, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号