首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4256篇
  免费   549篇
  国内免费   355篇
电工技术   334篇
综合类   312篇
化学工业   790篇
金属工艺   134篇
机械仪表   100篇
建筑科学   427篇
矿业工程   514篇
能源动力   183篇
轻工业   175篇
水利工程   74篇
石油天然气   182篇
武器工业   664篇
无线电   57篇
一般工业技术   790篇
冶金工业   136篇
原子能技术   99篇
自动化技术   189篇
  2024年   10篇
  2023年   39篇
  2022年   191篇
  2021年   129篇
  2020年   112篇
  2019年   86篇
  2018年   70篇
  2017年   159篇
  2016年   148篇
  2015年   150篇
  2014年   285篇
  2013年   279篇
  2012年   349篇
  2011年   379篇
  2010年   326篇
  2009年   296篇
  2008年   235篇
  2007年   317篇
  2006年   299篇
  2005年   252篇
  2004年   195篇
  2003年   185篇
  2002年   135篇
  2001年   121篇
  2000年   75篇
  1999年   83篇
  1998年   55篇
  1997年   32篇
  1996年   36篇
  1995年   36篇
  1994年   33篇
  1993年   14篇
  1992年   10篇
  1991年   10篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1968年   1篇
  1967年   1篇
  1951年   3篇
排序方式: 共有5160条查询结果,搜索用时 15 毫秒
81.
针对模型组合中常见的"状态空间爆炸"问题,分析了抽象和组合两种方法各自的优缺点,采用"反例引导的抽象精化"框架和模型检验思想,将抽象和组合结合起来,为模型组合的检验提出了一种新的方法.设计了模型的抽象、组合、检验和精化算法,开发了一款基于反例引导的、图形化的模型检验工具,使用Kripke结构建立模型,用LTL描述性质,从而表明了反例引导的模型检验方法的过程.  相似文献   
82.
为预测沉底装药水下爆炸产生气泡的最大半径和脉动周期,建立了水下刚性壁上的装药爆炸产生气泡的动力学模型.从Bernoulli方程和能量守恒两个角度推导出描述半球形气泡径向运动的流体动力学方程,通过能量法确定了方程的初始条件.对方程数值求解得到第一脉动周期内气泡半径和径向运动速度随时间变化的曲线.利用ANSYS-AUTODYN软件的高精度Euler-Godunov求解器和计算结果映射技术,建立了水下刚性壁上装药爆炸产生气泡运动的数值仿真模型.计算得到了气泡膨胀、收缩、上浮和脉动压力时程曲线及其几何形状变化规律.理论模型与仿真计算得到的气泡半径、脉动周期和径向运动速度均吻合,说明该理论模型满足工程所需精度要求.  相似文献   
83.
电网因其在电能传输方面的关键性作用,在我国民生项目建设领域一直扮演着至关重要的角色。电网杆塔上的绝缘子一旦发生自爆(也称“缺陷”),绝缘子会自动剥落,输电线路就会产生安全隐患,严重时会降低输电线路的运行寿命,甚至会引发供电中断,发生大范围的停电事故,造成巨大的财产损失。目前,主流的巡检方法为人工巡检,该方法不仅耗时耗力,而且也存在一定主观出错率,已不适用于目前电路巡检的实际情况。本设计采用YOLO V5网络模型,对无人机航拍影像中绝缘子串及绝缘子自爆进行自动识别。首先通过平移、翻转、裁剪等,对航拍绝缘子影像数据集进行数据增广,并对增广后的数据集在LabelImg中进行标注,然后利用YOLO V5网络模型对绝缘子串及绝缘子自爆进行识别,最后采用PyQt5框架在PyCharm中设计了绝缘子自爆识别的系统界面,对模型进行调用,实现了绝缘子串及绝缘子自爆识别。本设计采用从网络上下载、国家电网提供、数据增广所得到的500张无人机航拍影像作为数据集,对所得数据集进行人工标注,再使用YOLO V5网络模型进行训练和测试,结果表明YOLO V5网络模型对绝缘子串具有较高的识别精度,最高识别精度为90.2%,对绝缘子自爆的最高检测精度为80.8%。这说明了YOLO V5网络模型在绝缘子串识别方面有较好的表现,但是由于训练集中绝缘子自爆的样本影像数量有限,所以该网络模型对绝缘子的自爆识别存在一定局限性,本实验能够部分代替人力实现电网绝缘子智能巡检,提高了检测效率。  相似文献   
84.
This study deals with the synthesis of the Ti2AlC phase using the Electro-Thermal Explosion under Pressure with Confinement (ETEPC) technique. The effects of the ETEPC technique and the milling process parameters on the TiCx phase content and the formation mechanism of the Ti2AlC phase were investigated. The latter is mainly affected by the morphology of the powder mixture and aluminum melted amount. The optimization of the above parameters allowed the achievement of the desired reaction, leading to the formation of the Ti2AlC phase with a purity of about 97?wt%. The results clearly demonstrate that the ETEPC process enables one to control both time and material synthesis temperature.  相似文献   
85.
One of the methods to investigate the phenomenon of explosion underwater and its impact on the structures is to use the conical shock tube. These tubes produce a lot of pressure using a tiny explosive charge. In this essay, the geometry of the established/manufactured explosive shock tube is demonstrated first and the results of the experiments operating the tube is presented. Then, the explosion of a given amount of explosive charge in the conical shock tube is studied by benefiting the LS‐DYNA code. The numerical simulation is done by Lagrange‐Oiler selected multi‐materials solutions. To ensure the authenticity of the selected method in the software, the results of the stimulated model is compared with the experimental outcomes accordingly, after accrediting the accuracy of the results, the stimulating and scrutinizing the effects of geometrical parameters on the function of explosive shock tubes is proceeded. In this research, the effect of the cone head angel on the produced pressure inside the shock tube is analyzed first. Then, the function of shock tubes with different lengths is checked. Moreover, after changing the scale of the explosive charge and studying the outcome, stating the reasons for changes in each parameter and examining the effect of the relation between the explosive proportion and the water volume inside the shock tube, an equation for the equivalent mass for all sock tubes with different angels is exhibited and the existing theoretical relation is revised. Finally, by examining the pressure and impulses changes in different intervals, an equation is presented to anticipate the pressure and impulses in different shock tubes.  相似文献   
86.
临界直径是确定炸药合理装药直径、预防炸药拒爆和不完全爆轰的重要指标,对炸药性能提高和高效利用有着十分重要的意义。设计了一种连续压导探针和楔形装药装置,在对炸药爆速进行测试的同时,利用炸药在临界直径不完全爆轰的特征,通过寻找爆轰波传播的拐点确定炸药临界直径。试验结果表明:装药密度为0.9g/cm3的铵油炸药爆速为3 261 m/s,临界直径为12.5 mm。提供了一种可同时测得炸药爆速和临界直径的方法,该方法简单,试验费用低,对炸药参数测试具有一定的指导意义。  相似文献   
87.
为了测定三氨基三硝基苯(TATB)基含铝炸药在不同气氛中的爆热,使用绝热式量热弹对其压装药在真空、0.1 MPa氮气、0.1 MPa空气、0.1 MPa氧气和1.5 MPa氧气条件下的爆热进行了测量,研究了其能量释放规律,并使用X射线衍射(XRD)对固相产物成分进行了分析。结果表明:TATB基含铝炸药在真空、0.1 MPa氮气、0.1 MPa空气、0.1 MPa氧气和1.5 MPa氧气条件下的爆热依次增加;环境中压力的增加会导致爆热值增大,在0.1MPa氮气中,TATB基含铝炸药的爆热值比真空中增加了15.7%。环境中氧气量的增加也使爆热值增大:0.1 MPa空气中的爆热值比0.1 MPa氮气中增加了7.8%,0.1 MPa氧气中的爆热值比0.1 MPa氮气中高出49.7%,1.5MPa氧气中的爆热值比0.1 MPa氮气中高出146.1%。在富氧气氛下测试TATB基含铝炸药的爆热时,所测爆热接近于炸药的燃烧热,且爆炸产物的XRD结果也表明Al粉已基本氧化完全。同时,在0.1 MPa氮气气氛下没有检测到氮化物Al N的存在。该方法可对不同气氛下含铝炸药的爆热进行测量,并对爆炸产物中Al的存在形式进行分析。  相似文献   
88.
利用ANSYS/LS-DYNA仿真软件研究了药型罩曲率半径对双层药型罩EFP战斗部成形及侵彻特性的影响规律。数值计算结果表明,当药型罩曲率半径的相对值在0.67~0.93时,弧锥结合型双层药型罩EFP战斗部可成形具有良好外形的侵彻体;此时,成形侵彻体的最大侵彻深度约为1倍装药口径。试验结果表明,双层药型罩EFP战斗部成形侵彻体能够有效击穿2层2 cm厚45#钢靶,成形侵彻体对钢靶侵彻的开口形状近似呈现圆形,是具有相同装药结构EFP战斗部成形侵彻体侵彻深度的2倍左右。研究结果可以为双层药型罩EFP战斗部结构优化设计提供参考。  相似文献   
89.
采用试验和数值模拟相结合的方法研究了硬脂酸粉尘火焰在上端开口的圆柱形垂直燃烧管道的传播过程。试验利用高速摄影系统和红外热成像仪记录了火焰的传播过程和温度分布情况,结果表明:火焰传播速度和火焰温度均呈现先增大后减小的趋势。采用Fluent软件计算得到的模拟结果与试验值吻合较好,模拟结果揭示了硬脂酸粉尘爆炸过程中气流速度的变化情况,分析结果表明:在同一时刻,气流速度高于粉尘火焰传播速度,是造成粉尘二次扬尘,进而产生持续爆炸的重要因素之一。  相似文献   
90.
苗朝阳  李秀地  杨森  耿振刚 《爆破》2016,33(1):131-136
为研究坑道内爆炸冲击波相似律问题,进行了不同药量坑道堵口爆炸实验,并利用ANSYS/LSDYNA软件对原型坑道与模型坑道爆炸冲击波进行数值计算。结果表明:与自由大气中不同,同一坑道内不同药量爆炸产生的冲击波不符合爆炸相似律;若原型坑道与模型坑道几何相似,装药量之比为几何相似比的三次方,则原型坑道与模型坑道内爆炸冲击波符合爆炸相似律;坑道内爆炸冲击波数值模拟时,若原型坑道与模型坑道网格尺寸符合相应的几何相似比,则冲击波计算结果满足相似律,当坑道截面网格密度为1675~2977时可以达到计算精度要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号