首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22768篇
  免费   2146篇
  国内免费   1601篇
电工技术   999篇
综合类   1215篇
化学工业   6862篇
金属工艺   3184篇
机械仪表   1181篇
建筑科学   669篇
矿业工程   438篇
能源动力   841篇
轻工业   1303篇
水利工程   200篇
石油天然气   453篇
武器工业   96篇
无线电   2207篇
一般工业技术   4181篇
冶金工业   1026篇
原子能技术   1282篇
自动化技术   378篇
  2024年   49篇
  2023年   306篇
  2022年   437篇
  2021年   650篇
  2020年   746篇
  2019年   745篇
  2018年   735篇
  2017年   918篇
  2016年   844篇
  2015年   792篇
  2014年   1077篇
  2013年   1232篇
  2012年   1475篇
  2011年   1642篇
  2010年   1186篇
  2009年   1205篇
  2008年   1118篇
  2007年   1481篇
  2006年   1453篇
  2005年   1221篇
  2004年   1115篇
  2003年   951篇
  2002年   845篇
  2001年   712篇
  2000年   623篇
  1999年   464篇
  1998年   383篇
  1997年   330篇
  1996年   318篇
  1995年   256篇
  1994年   282篇
  1993年   163篇
  1992年   154篇
  1991年   132篇
  1990年   105篇
  1989年   73篇
  1988年   70篇
  1987年   48篇
  1986年   58篇
  1985年   29篇
  1984年   27篇
  1983年   11篇
  1982年   13篇
  1981年   11篇
  1980年   6篇
  1979年   2篇
  1978年   5篇
  1974年   4篇
  1959年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
11.
在45钢表面电刷镀得到三价铬镀层,镀液组成和工艺条件为:Cr2(SO4)36H2O 0.4 mol/L,甲酸铵0.5 mol/L,氨基乙酸0.5 mol/L,H3BO30.6 mol/L,NaH2PO2 H2O 0.3 mol/L,pH=1.5,温度50°C,镀笔移动速率15 cm/s。研究了电压对镀铬层显微结构、表面粗糙度、厚度、显微硬度和耐磨性的影响。随电压增大,镀层厚度增大,显微硬度和耐磨性均先提高后降低。电压为14 V时,镀层的表面平整,粗糙度为2.387μm,显微硬度为602 HV,耐磨性最好。  相似文献   
12.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
13.
Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs—nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)—might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.  相似文献   
14.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
15.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
16.
In continuation to my previous work (Guha S. AIChE J. 2013;59(4):1390-1399), in this work, effects of ionic migration are evaluated for disk region of a rotating ring disk electrode system by numerically solving complex differential equations, developed for mass transfer along with kinetic complication in presence of ionic migration under limiting current condition. The system for simulation is 0.01 M Fe2(SO4)3 solution with H2SO4 as supporting electrolyte. Simulation cases are presence and absence of ionic migration with kinetic complication (oxidation of Fe2+ to Fe3+ under O2 pressure). Results show that concentration boundary layer thickness of reactant Fe3+ reduces appreciably and steady-state disk current reduces substantially in presence of migration. Simulated steady-state disk current in absence of migration case agrees well with published data. Results indicate higher Fe2+ concentration in presence of migration and thereby higher rate of oxidation of Fe2+ to Fe3+ at all rate constant values.  相似文献   
17.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
18.
Lithium‐rich disordered rock‐salt oxides have attracted great interest owing to their promising performance as Li‐ion battery cathodes. While experimental and theoretical efforts are critical in advancing this class of materials, a fundamental understanding of key property changes upon Li extraction is largely missing. In the present study, single‐crystal synthesis of a new disordered rock‐salt cathode material, Li1.3Ta0.3Mn0.4O2 (LTMO), and its use as a model compound to investigate Li concentration–driven evolution of local cationic ordering, charge compensation, and chemical distribution are reported. Through the combined use of 2D and 3D X‐ray nanotomography, it is shown that Li removal accompanied by oxygen oxidation is correlated with the development of morphological defects such as particle cracking. Chemical heterogeneity, quantified by subparticle level distribution of Mn valence state, is minimal during Mn redox, which drastically increases upon the formation of cracks during oxygen redox. Density functional theory and bond valence sum mismatch calculations reveal the presence of local short‐range ordering in the pristine oxide, which gradually disappears along with the extraction of Li. The study suggests that with cycling the transformation into true cation–disordered state can be expected, which likely impacts the voltage profile and obtainable energy density of the oxide cathodes.  相似文献   
19.
《Ceramics International》2020,46(9):12921-12927
The further development of clean energy requires the use of more stable and reliable energy storage system. In addition to lithium ion battery power supplies, sodium ion batteries also have prospects for application and development thanks to the low cost and abundant resource. NaTi2(PO4)3 has attracted much attention due to its three-dimensional channels for sodium ion transfer. In order to meliorate sodium storage properties of NaTi2(PO4)3 electrode, a facile strategy of Sn substitution at Ti sites was employed, and a series of electrodes were successfully synthesized through sol-gel route. The electrochemical performances of Sn substituted composites are significantly improved compared with bare NaTi2(PO4)3/C. And it was found that NaSn0.2Ti1.8(PO4)3 (NTP/C-Sn-2) delivers the largest capacity, and it also demonstrates the outstanding cycling performances. NTP/C-Sn-2 has discharge capacity of 131.1 mAh g−1 at 4 A g−1 in rate test and 121.4 mAh g−1 at 1 A g−1 after 1000 cycles in cycling test. The experimental results show that NaTi2(PO4)3/C with Sn substitution with proper content exhibits the great potential in anode for sodium ion batteries, and can further provide reference for next generation electrode materials and battery systems.  相似文献   
20.
A device able to electrokinetically concentrate cationic samples has many potential medical and industrial applications, but until now has remained undeveloped due to the lack of a commercial anion-permselective material leading to a prohibitively complex fabrication procedure. Herein, a novel multiscale-porous anion exchange membrane (MP-AEM) that enables the convenient and scalable electrokinetic concentration of cationic species is proposed. A mechanically enhanced multiscale-porous structure with a solid framework is realized by adopting polyester resin as an additive to overcome the intrinsic limitations of the AEM material. The scalable MP-AEM-embedded electrokinetic concentrator is devised based on the peculiar properties of the MP-AEM that for allow both ion and fluid transport. With the MP-AEM, the concentrator is fabricated in a highly streamlined manner consisting only of a simple insertion and assembly. The concentration performance of the MP-AEM-embedded electrokinetic concentrator is demonstrated with a positively charged fluorescent dye and a fluorescein-labeled protein, and the results show enrichment factors of 250 and 500, respectively. The MP-AEM makes cationic electrokinetic concentration more accessible and scalable, thereby enabling further progress in a wide range of fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号