首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24667篇
  免费   2244篇
  国内免费   1721篇
电工技术   619篇
综合类   1194篇
化学工业   8421篇
金属工艺   2638篇
机械仪表   1312篇
建筑科学   317篇
矿业工程   358篇
能源动力   1091篇
轻工业   359篇
水利工程   30篇
石油天然气   243篇
武器工业   220篇
无线电   3842篇
一般工业技术   5319篇
冶金工业   1862篇
原子能技术   261篇
自动化技术   546篇
  2024年   69篇
  2023年   567篇
  2022年   719篇
  2021年   826篇
  2020年   852篇
  2019年   787篇
  2018年   657篇
  2017年   840篇
  2016年   750篇
  2015年   762篇
  2014年   1139篇
  2013年   1118篇
  2012年   1464篇
  2011年   1724篇
  2010年   1135篇
  2009年   1355篇
  2008年   1129篇
  2007年   1552篇
  2006年   1459篇
  2005年   1216篇
  2004年   1153篇
  2003年   1137篇
  2002年   954篇
  2001年   876篇
  2000年   829篇
  1999年   556篇
  1998年   521篇
  1997年   411篇
  1996年   400篇
  1995年   313篇
  1994年   261篇
  1993年   191篇
  1992年   192篇
  1991年   176篇
  1990年   186篇
  1989年   155篇
  1988年   43篇
  1987年   27篇
  1986年   21篇
  1985年   9篇
  1984年   19篇
  1983年   8篇
  1982年   11篇
  1981年   9篇
  1980年   8篇
  1979年   17篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
The enhancement of the thermal conductivity, keeping the electrical insulation, of epoxy thermosets through the addition of pristine and oxidized carbon nanotubes (CNTs) and microplatelets of boron nitride (BN) was studied. Two different epoxy resins were selected: a cycloaliphatic (ECC) epoxy resin and a glycidylic (DGEBA) epoxy resin. The characteristics of the composites prepared were evaluated and compared in terms of thermal, thermomechanical, rheological and electrical properties. Two different dispersion methods were used in the addition of pristine and oxidized CNTs depending on the type of epoxy resin used. Slight changes in the kinetics of the curing reaction were observed in the presence of the fillers. The addition of pristine CNTs led to a greater enhancement of the mechanical properties of the ECC composite whereas the oxidized CNTs presented a greater effect in the DGEBA matrix. The addition of CNTs alone led to a marked decrease of the electrical resistivity of the composites. Nevertheless, in the presence of BN, which is an electrically insulating material, it was possible to increase the proportion of pristine CNTs to 0.25 wt% in the formulation without deterioration of the electrical resistivity. A small but significant synergic effect was determined when both fillers were added together. Improvements of about 750% and 400% in thermal conductivity were obtained in comparison to the neat epoxy matrix for the ECC and DGEBA composites, respectively. © 2019 Society of Chemical Industry  相似文献   
22.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
23.
《Ceramics International》2021,47(23):32699-32709
Digital light processing (DLP)-based ceramic stereolithography has attracted significant attentions due to the high printing speed and high dimensional accuracy of DLP printers. However, undesired dropping of unfinished ceramic parts during printing, owing to inadequate adhesion between the first cured layer and the substrate of the building platform, still remains a challenge. In this study, the relationship between the adhesion properties of ultraviolet (UV)-curable alumina (α-Al2O3) suspensions and the functionalities and structures of UV-curable acrylate monomers was investigated. With an increase in the proportions of monofunctional monomers, the adhesion abilities of UV-curable alumina suspensions enhanced because of reduced volume shrinkage, however, inferior curing performances were observed due to a decrease in the double bond densities. Furthermore, the large-volume branched chain structures in monofunctional monomers and ethyoxyl groups in polyfunctional monomers effectively decreased the volume contraction, improving the adhesion performances of UV-curable alumina suspensions and facilitating the conversion of double bonds to provide excellent curing properties, further guaranteeing strong adhesion of these suspensions to the substrate.  相似文献   
24.
Recently, quorum sensing (QS) inhibitors (QSIs) have been combined with antibiotics to enhance antibiofilm efficacy in vitro and in vivo. However, targeting QS signals alone is not enough to prevent bacterial infections. Drug resistance and recurrence of biofilms makes it difficult to eradicate. Herein, photodynamic therapy (PDT) is selected to unite QSIs and antibiotics. A synergistically antibiofilm system, which combines QSIs, antibiotics, and PDT based on hollow carbon nitride spheres (HCNSs) is envisaged. First, HCNS provides the multidrug delivering ability, enabling QSIs and antibiotics to be released in sequence. Subsequently, multistage releases sensitize bacteria effectively, potentiating the chemotherapeutic effects of the antibiotics. Finally, the integration of QSIs and PDT not only minimizes the possibility of drug resistance, but also overcomes the problem of limited mass and extension of PDT. Even after 48 h of incubation, the bacterial biofilm is obviously inhibited. And its biofilm disperse efficiency exceeds 48% (compared with QSI‐potentiated chemotherapy group) and 40% (compared with PDT group). Besides, the inhibition of the QS system influences phenotypes related to virulence factor production and surface hydrophobicity, which weaken biofilm invasion and formation. Eventually, this system is applied to disperse bacterial biofilm in vivo. Overall, PDT and QS modulation are devoted to eradicate drug resistance and recurrence of the biofilm.  相似文献   
25.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
26.
27.
Directionally solidified microstructures of Al2O3-Er3Al5O12 eutectic and off-eutectic in situ composite ceramics were explored under abrupt-change pulling rate conditions. Corresponding temperature distributions and interface locations were studied. In eutectic composition, fluctuation of eutectic spacing occurred when the pulling rate increased abruptly. A gradually increase or abrupt increase in eutectic spacing was observed when the pulling rate decreased abruptly. In hypoeutectic and hypereutectic compositions, formation of the primary phases were suppressed when the pulling rate increased abruptly from 10?µm/s to 100?µm/s, while primary phases precipitated when the pulling rate decreased abruptly from 100?µm/s to 10?µm/s. The interface altitude decreased after the pulling rate increased abruptly, but increased after the pulling rate decreased abruptly. The liquid composition restriction (around the eutectic composition) at the eutectic interface plays an important role in the suppression of the primary dendrite and coupled eutectic oxides can be obtained in off-eutectic compositions even under higher solidification rate conditions.  相似文献   
28.
设计了一种开关磁阻直线电机,使用JMAG软件对其进行了仿真和优化。进行了推力公式的推导,研究了导通顺序和初始位置对电机推力的影响,并分析了三种典型情况的磁力线分布。对电机的定子和动子的齿部和轭部高度、宽度及铁耗进行仿真优化,得出了最优参数。将有取向硅钢应用于该电机,研究了推力与轧制角的关系,并与使用普通硅钢的开关磁阻直线电机进行了对比,推力有一定提升。提出在动子齿部开切向槽的方案,结果表明,开切向槽对推力的影响较小,并能显著减小推力波动。  相似文献   
29.
A novel glass-ceramic material based on albite type Na-rich feldspar has been synthesized by conventional ceramic process. High crystallinity, >94%?Vol.% is obtained by fast sintering which allows energy saving processing. Albite is the main crystalline phase and tetragonal SiO2 is a secondary phase. Electrical properties were examined by complex impedance, DC measurements, and dielectric breakdown test. Dielectric characterization shows a non-Debye type dielectric behavior with low dielectric constant, 4.6 at 1?MHz, low dielectric losses, (~10?3 at 1?MHz, and a large dielectric strength, ~60?kV/mm), that it is the largest value reported in ceramic insulators. Those dielectric properties are attained by the low glassy phase content in the samples and their unique micro-nanostructure. All these properties make this novel material a very promising candidate in the market of ceramic electrical insulator, highlighting for high-voltage applications.  相似文献   
30.
Abstract

In this work, a new g-C3N4-based Z-scheme with γ-Fe2O3 and β-Ag2Se both n-type semiconductors, and graphite to favor electron exchange is presented. The composite material was studied by XRD, FTIR, UV-Vis, TEM, XPS, TGA, DSC and TOF-SIMS, and the ability of this photocatalytic system to act as a photo-reductant was assessed using crystal violet (CV+) dye. Solar light driven photo-reduction of CV+ in the presence of tri-sodium citrate evidenced a synergistic enhancement of the activity of the composite toward reduction, with ~20 times higher conversion rates per unit of surface area than those of g-C3N4. Photo-oxidation experiments under Xe lamp irradiation in the presence of H2O2 also showed that the AgFeCN composite featured a higher activity (~8×) than g-C3N4. This Z-scheme may deserve further study as a photo-reductant to obtain hydrogen or hydrogenated compounds. Moreover, the use of CV+ may represent a facile procedure that can aid in the selection of new photocatalysts to be used in hydrogen production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号