首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19176篇
  免费   3521篇
  国内免费   663篇
电工技术   106篇
综合类   996篇
化学工业   8670篇
金属工艺   2086篇
机械仪表   572篇
建筑科学   318篇
矿业工程   104篇
能源动力   158篇
轻工业   1687篇
水利工程   19篇
石油天然气   37篇
武器工业   121篇
无线电   418篇
一般工业技术   7514篇
冶金工业   375篇
原子能技术   33篇
自动化技术   146篇
  2024年   83篇
  2023年   379篇
  2022年   455篇
  2021年   829篇
  2020年   750篇
  2019年   771篇
  2018年   816篇
  2017年   867篇
  2016年   1056篇
  2015年   1352篇
  2014年   1189篇
  2013年   1382篇
  2012年   1209篇
  2011年   1268篇
  2010年   1070篇
  2009年   1107篇
  2008年   834篇
  2007年   1079篇
  2006年   1079篇
  2005年   904篇
  2004年   787篇
  2003年   742篇
  2002年   613篇
  2001年   473篇
  2000年   436篇
  1999年   333篇
  1998年   311篇
  1997年   225篇
  1996年   175篇
  1995年   158篇
  1994年   131篇
  1993年   82篇
  1992年   80篇
  1991年   82篇
  1990年   102篇
  1989年   74篇
  1988年   16篇
  1987年   14篇
  1986年   10篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1964年   1篇
  1959年   1篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
31.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   
32.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
33.
The microstructure and the oxidation resistance in air of continuous carbon fibre reinforced ZrB2–SiC ceramic composites were investigated. SiC content was varied between 5–20?vol.%, while maintaining fibre content at ~40?vol.%. Short term oxidation tests in air were carried out at 1500 and 1650?°C in a bottom-up loading furnace. The thickness, composition and microstructure of the resulting oxide scale were analysed by SEM-EDS and X-Ray diffraction. The results show that contents above 15?vol.% SiC ensure the formation of a homogeneous protective borosilicate glass that covers the entire sample and minimizes fibre burnout. The scale thickness is ~90?μm for the sample containing 5?vol.% SiC and decreases with increasing SiC content.  相似文献   
34.
We found for the first time that (1 − x) Na0.5Bi0.5TiO3-xBiZn0.5Ti0.5O3 (NBT–BZT) composite ceramics showed negative temperature coefficient (NTC) at a high temperature. The NBT–BZT nanopowders were successfully prepared by Pechini method. Their ceramics were sintered at 1100°C. The NBT–BZT ceramic exhibited a good linear relationship between logarithm of electrical resistivity (Inρ) and reciprocal of absolute temperature (1000/T) at 250°C–1050°C. The obtained ρ600, ρ900, and B600/900 constants of the NBT–ZBT NTC thermistors are approximately 5.92 × 106 to 3.01 × 104 Ω cm, 7.03 × 103 to 7.60 × 102 Ω cm and 2.3 × 104-1.3 × 104 K, respectively. The electrical characteristics can be tuned to the desired value by changing the Na0.5Bi0.5TiO3 content in the compound. The electrical conductivity in these compounds is due to the electron jumps between Ti3+ and Ti4+ and oxygen-ion conductivity. Results demonstrate a tremendous potential of the studied system for perovskite materials with NTC performance.  相似文献   
35.
To investigate the effects of SiC on microstructure, hardness, and fracture toughness, 0, 10, 20, and 30 vol% SiC were added to HfB2 and sintered by SPS. Upon adding SiC to 30 vol%, relative density increased about 4%; but HfB2 grain growth had a minimum at 20 vol% SiC. This may be due to grain boundary silicate glass, responsible for surface oxide wash out, enriched in SiO2 with higher fraction of SiC. By SiO2 enrichment, the glass viscosity increased and higher HfO2 remained unsolved which subsequently lead to higher grain growth. Hardness has increased from about 13 to 15 GPa by SiC introduction with no sensible variation with SiC increase. Residual stress measurements by Rietveld method indicated high levels of tensile residual stresses in the HfB2 Matrix. Despite the peak residual stress value at 20 vol% SiC, fracture toughness of this sample was the highest (6.43 MPa m0.5) which implied that fracture toughness is mainly a grain size function. Tracking crack trajectory showed a mainly trans-granular fracture, but grain boundaries imposed a partial deflection on the crack pathway. SiC had a higher percentage in fracture surface images than the cross-section which implied a weak crack deflection.  相似文献   
36.
Low-loss (Zn1-xNix)ZrNbTaO8 (0.02?≤?x?≤?0.10) ceramics possessing single wolframite structure are initiatively synthesized by solid-state route. Based on the results of Rietveld refinement, complex chemical bond theory is used to establish the correlation between structural characteristics and microwave performance in this ceramic system. A small amount of Ni2+ (x?=?0.06) in A-site with the fixed substitution of Ta5+ in B-site can effectually raise the Q?×?f value of ZnZrNb2O8 ceramic, embodying a dense microstructure and high lattice energy. The dielectric constant and τf are mainly affected by bond ionicity and the average octahedral distortion. The (Zn0.94Ni0.06)ZrNbTaO8 ceramic sample sintered at 1150?°C for 3?h exhibits an outstanding combination of microwave dielectric properties: εr =?27.88, Q?×?f?=?128,951?GHz, τf =?–39.9?ppm/°C. Thus, it is considered to be a candidate material for the communication device applications at high frequency.  相似文献   
37.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
38.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
39.
Vitrified bond CBN grinding wheels are being widely used due to their superior performance. Also, advantages of vitrified grinding wheels are high elastic modulus, stable chemical property, and low thermal expansion coefficient. Brittleness and low strength are key factors restricting the development of vitrified bond CBN grinding wheels. In this paper, the sintering in a high magnetic field was innovatively introduced into the manufacturing of vitrified bond CBN grinding wheels, and the effects of sintering in a high magnetic field on properties on vitrified bond and vitrified CBN composites were systematically investigated. Vitrified bond was characterized using three-point bending, scanning electron microscopy, X-ray diffraction. It was observed that microstructure of vitrified bond could be changed, grain orientation could be controlled and average grain size could be decreased in a high magnetic field, while vitrified bond strength could be simultaneously improved. High quality vitrified bond could be obtained by appropriately adjusting the strength and direction of high magnetic field. Results demonstrated that vitrified bond properties were improved when the magnetic field strength was 6?T. In order to highlight the high magnetic field effect on the vitrified CBN composites, the ordinary CBN abrasives and nickel plated CBN abrasives were used respectively. Microstructures, bending strengths of vitrified CBN composites were compared in different high magnetic fields. When the magnetic field strength was appropriate (less than 6?T), the binding characteristic of vitrified bond CBN composites with nickel plated CBN abrasives was greatly improved. The highest bending strength value of vitrified CBN composites was 79.5?MPa in 6?T high magnetic field.  相似文献   
40.
This study was addressed to the influence of an electric field strength applied at fabrication process and matrix properties, such as the dielectric constant and the Young's modulus, on “pseudo‐1‐3 piezoelectric ceramic/polymer composite” in order to further enhance the piezoelectricity of that. The pseudo‐1‐3 piezoelectric ceramic/polymer composite consists of linearly ordered piezoelectric ceramic particles in polymer material. Silicone gel, silicone rubber, urethane rubber, and poly‐methyl‐methacrylate, which exhibit different dielectric constants and Young's modulus, were used as matrices to evaluate the matrix influence. The piezoelectricity of the pseudo‐1‐3 piezoelectric ceramic/polymer composite was evaluated using the piezoelectric strain constant d33. The d33 is one of the indices of the piezoelectric properties for piezoelectric materials. As a result, it was confirmed that d33 of the pseudo‐1‐3 piezoelectric ceramic/polymer composite increased with the increase of the electric filed strength applied at fabrication process, though, it reached a constant value at a certain strength value. Further it was confirmed that dielectric constant of the matrix had a small influence on d33 of the pseudo‐1‐3 piezoelectric ceramic/polymer composite, however, in case of matrix of lower Young's modulus, d33 was increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41817.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号