首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42338篇
  免费   3863篇
  国内免费   3661篇
电工技术   3464篇
技术理论   5篇
综合类   3324篇
化学工业   2508篇
金属工艺   342篇
机械仪表   1612篇
建筑科学   1663篇
矿业工程   237篇
能源动力   1434篇
轻工业   580篇
水利工程   452篇
石油天然气   428篇
武器工业   201篇
无线电   3355篇
一般工业技术   3274篇
冶金工业   902篇
原子能技术   177篇
自动化技术   25904篇
  2024年   98篇
  2023年   647篇
  2022年   504篇
  2021年   840篇
  2020年   1148篇
  2019年   1255篇
  2018年   1183篇
  2017年   1485篇
  2016年   1658篇
  2015年   1539篇
  2014年   2552篇
  2013年   3772篇
  2012年   2183篇
  2011年   2687篇
  2010年   2005篇
  2009年   2498篇
  2008年   2519篇
  2007年   2544篇
  2006年   2179篇
  2005年   1931篇
  2004年   1614篇
  2003年   1550篇
  2002年   1365篇
  2001年   1075篇
  2000年   1080篇
  1999年   970篇
  1998年   872篇
  1997年   753篇
  1996年   690篇
  1995年   599篇
  1994年   544篇
  1993年   520篇
  1992年   399篇
  1991年   377篇
  1990年   297篇
  1989年   234篇
  1988年   202篇
  1987年   172篇
  1986年   140篇
  1985年   182篇
  1984年   192篇
  1983年   174篇
  1982年   150篇
  1981年   101篇
  1980年   72篇
  1979年   85篇
  1978年   63篇
  1977年   69篇
  1976年   19篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 244 毫秒
991.
This paper investigates the exponential observer design problem for one‐sided Lipschitz nonlinear systems. A unified framework for designing both full‐order and reduced‐order exponential state observers is proposed. The developed design approach requires neither scaling of the one‐sided Lipschitz constant nor the additional quadratically inner‐bounded condition. It is shown that the synthesis conditions established include some known existing results as special cases and can reduce the intrinsic conservatism. For design purposes, we also formulate the observer synthesis conditions in a tractable LMI form or a Riccati‐type inequality with equality constraints. Simulation results on a numerical example are given to illustrate the advantages and effectiveness of the proposed design scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
992.
This paper presents a new perspective on the stability problem for uncertain LTI feedback systems with actuator input amplitude saturation. The solution is obtained using the quantitative feedback theory and a 3 DoF non‐interfering control structure. Describing function (DF) analysis is used as a criterion for closed loop stability and limit cycle avoidance, but the circle or Popov criteria could also be employed. The novelty is the combination of a controller parameterization from the literature and describing function‐based limit cycle avoidance with margins for uncertain plants. Two examples are given. The first is a benchmark problem and a comparison is made with other proposed solutions. The second is an example that was implemented and tested on an X‐Y linear stage used for nano‐positioning applications. Design and implementation considerations are given. An example is given on how the method can be extended to amplitude and rate saturation with the help of the generalized describing function, and a novel anti‐windup compensation structure inspired by previous contributions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
993.
In this paper, a consensus problem is studied for a group of second‐order nonlinear heterogeneous agents with non‐uniform time delay in communication links and uncertainty in agent dynamics. We design a class of novel decentralized control protocols for the consensus problem whose solvability is converted into stability analysis of an associated closed‐loop system with uncertainty and time delay. Using an explicitly constructed Lyapunov functional, the stability conditions or the solvability conditions of the consensus problem are given in terms of a set of linear matrix inequalities apart from a small number of scalar parameters that appear nonlinearly. Furthermore, the linear matrix inequalities are theoretically verified to be solvable when the communication delay is sufficiently small. The effectiveness of the proposed control protocol is illustrated by numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
994.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
995.
In this paper, we consider the recursive state estimation problem for a class of discrete‐time nonlinear systems with event‐triggered data transmission, norm‐bounded uncertainties, and multiple missing measurements. The phenomenon of event‐triggered communication mechanism occurs only when the specified event‐triggering condition is violated, which leads to a reduction in the number of excessive signal transmissions in a network. A sequence of independent Bernoulli random variables is employed to model the multiple measurements missing in the transmission. The norm‐bounded uncertainties that could be considered as external disturbances which lie in a bounded set. The purpose of the addressed filtering problem is to obtain an optimal robust recursive filter in the minimum‐variance sense such that with the simultaneous presence of event‐triggered data transmission, norm‐bounded uncertainties, and multiple missing measurements; the filtering error is minimized at each sampling time. By solving two Riccati‐like difference equations, the filter gain is calculated recursively. Based on the stochastic analysis theory, it is proved that the estimation error is bounded under certain conditions. Finally, two numerical examples are presented to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
996.
A new online iterative algorithm for solving the H control problem of continuous‐time Markovian jumping linear systems is developed. For comparison, an available offline iterative algorithm for converging to the solution of the H control problem is firstly proposed. Based on the offline iterative algorithm and a new online decoupling technique named subsystems transformation method, a set of linear subsystems, which implementation in parallel, are obtained. By means of the adaptive dynamic programming technique, the two‐player zero‐sum game with the coupled game algebraic Riccati equation is solved online thereafter. The convergence of the novel policy iteration algorithm is also established. At last, simulation results have illustrated the effectiveness and applicability of these two methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
997.
This paper presents formulation of a novel block‐backstepping based control algorithm to overcome the challenges posed by the tracking and the stabilization problem for a differential drive wheeled mobile robot (WMR). At first, a two‐dimensional output vector for the WMR has been defined in such a manner that it would decouple the two control inputs and, thereby, allow the designer to formulate the control laws for the two inputs one at a time. Actually, the decoupling has been carried out in a way to convert the system into block‐strict feedback form. Thereafter, block‐backstepping control algorithm has been utilized to derive the expressions of the control inputs for the WMR system. The proposed block‐backstepping technique has further been enriched by incorporating an integral action for enhancing the steady state performance of the overall system. Global asymptotic stability of the overall system has been analyzed using Lyapunov stability criteria. Finally, the proposed control algorithm has been implemented on a laboratory scale differential drive WMR to verify the effectiveness of the proposed control law in real‐time environment. Indeed, the proposed design approach is novel in the sense that it has judiciously exploited the nonholonomic constraint of the WMR to result in a reduced order block‐backstepping controller for the WMR, and thereby, it has eventually yielded a compact expression of the control law that is amenable to real‐time implementation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
998.
This paper deals with the fault detection and isolation (FDI) problem for uncertain closed‐loop systems with external disturbances and nonlinear perturbations. To address the system uncertainties and the nonlinear perturbations in different faulty models, adaptive and switching techniques are introduced to construct a bank of FDI observers, such that one of them can match the current system, and the corresponding observer estimate errors can converge asymptotically to zero. An effective FDI scheme is then presented by introducing some model‐matching indexes. Moreover, the introduced switching laws liberate the equality constraints often used in the existing FDI approaches, which are hard to satisfy if the system matrices include uncertainties. Finally, a simulation example of F/A‐18A automatic carrier landing system is used to illustrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
999.
This paper studies a Lyapunov‐based small‐gain approach on design of triggering conditions in event‐triggered control systems. The event‐triggered control closed‐loop system is formulated as a hybrid system model. Firstly, by viewing the event‐triggered control closed‐loop system as a feedback connection of two smaller hybrid subsystems, the Lyapunov‐based small‐gain theorems for hybrid systems are applied to design triggering conditions. Then, a new class of triggering condition, the safe, adjustable‐type triggering condition, is proposed to tune the parameters of triggering conditions by practical regulations. This is conducive to break the restriction of the conservation of theoretical results and improve the practicability of event‐triggered control strategy. Finally, a numerical example is given to illustrate the efficiency and the feasibility of the proposed results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
1000.
This paper studies the problems of stabilization of discrete‐time linear systems with a single input delay. By developing the methodology of pseudo‐predictor feedback, which uses the (artificial) closed‐loop system dynamics to predict the future state, memoryless state feedback control laws are constructed to solve the problem. Necessary and sufficient conditions are obtained to guarantee the stability of the closed‐loop system in terms of the stability of a class‐difference equations. It is also shown that the proposed controller achieves semi‐global stabilization of the system if its actuator is subject to either magnitude saturation or energy constraints under the condition that the open‐loop system is only polynomially unstable. Numerical examples have been worked out to illustrate the effectiveness of the proposed approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号