首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70052篇
  免费   6329篇
  国内免费   3724篇
电工技术   5259篇
综合类   5563篇
化学工业   11437篇
金属工艺   7559篇
机械仪表   4136篇
建筑科学   6322篇
矿业工程   1700篇
能源动力   4302篇
轻工业   4318篇
水利工程   1684篇
石油天然气   3546篇
武器工业   636篇
无线电   5890篇
一般工业技术   7699篇
冶金工业   4885篇
原子能技术   1306篇
自动化技术   3863篇
  2024年   200篇
  2023年   940篇
  2022年   1815篇
  2021年   2206篇
  2020年   2303篇
  2019年   1856篇
  2018年   1739篇
  2017年   2351篇
  2016年   2526篇
  2015年   2604篇
  2014年   4106篇
  2013年   4289篇
  2012年   5143篇
  2011年   5572篇
  2010年   3902篇
  2009年   4085篇
  2008年   3643篇
  2007年   4695篇
  2006年   4317篇
  2005年   3478篇
  2004年   3076篇
  2003年   2633篇
  2002年   2157篇
  2001年   1926篇
  2000年   1583篇
  1999年   1248篇
  1998年   999篇
  1997年   867篇
  1996年   771篇
  1995年   585篇
  1994年   514篇
  1993年   357篇
  1992年   345篇
  1991年   300篇
  1990年   225篇
  1989年   147篇
  1988年   126篇
  1987年   73篇
  1986年   76篇
  1985年   64篇
  1984年   57篇
  1983年   43篇
  1982年   29篇
  1981年   17篇
  1980年   24篇
  1979年   17篇
  1977年   8篇
  1964年   5篇
  1959年   15篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
51.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
52.
李中望 《电镀与涂饰》2021,40(4):269-273
针对电镀液温度控制系统,引入状态反馈控制。相对于传统的反馈控制,本方法可以获得更优异的性能。另外,考虑到镀液温度控制具有纯迟延的特点,提出了一种消去纯迟延的方法。仿真验证结果显示,控制效果良好。  相似文献   
53.
The need for electronics to operate at temperatures of 200°C and above continues to grow. These applications include avionics, aerospace, automotive, downhole drilling, mining, and many others. To satisfy this demand, a significant amount of research and development has been conducted. Despite the efforts, the number of new electronic components designed specifically for high-temperature operation is still relatively limited. In Low Temperature Co-fired Ceramic (LTCC) packages, LTCC materials are generally used as the host media for a number of pre-fabricated semiconductor components. As a result, reliability of the entire LTCC package largely depends on the performance of the least robust component. Ferro A6M-E and Ferro L8 are the two well-established and recognized LTCC dielectrics widely used for mid and high frequency LTCC applications, including several high reliability aerospace and defense applications that require demanding Mil-Spec qualifications. This study is our first attempt to characterize and understand basic high-temperature dielectric properties of these two commercial LTCC materials. The secondary objective is to initiate a dialogue in attempt to establish reliability requirements for LTCC packages dedicated for high-temperature operation.  相似文献   
54.
Reactive hot pressing was utilized to synthesize and densify four ZrB2 ceramics with impurity contents low enough to avoid obscuring the effects of dopants on thermal properties. Nominally pure ZrB2 had a thermal conductivity of 141 ± 3 W/m K at 25 °C. Additions of 3 at% of Ti, Y, or Hf decreased the thermal conductivity by 20 %, 30 %, and 40 %, respectively. The thermal conductivity of (Zr,Hf)B2 was similar to ZrB2 synthesized from commercial powders containing the natural abundance of Hf as an impurity. This is the first study to demonstrate that Ti and Y additions decrease the thermal conductivity of ZrB2 ceramics and report intrinsic values for thermal conductivity and electrical resistivity of ZrB2 containing transition metal additions. Previous studies were unable to detect these effects because the natural abundance of Hf present masked the effects of these additions.  相似文献   
55.
56.
Low temperature co-fired ceramic (LTCC) micro-hotplates show wide applications in gas sensors and micro-fluidic devices. It is easily structured in three-dimensional structures. This paper presents the low power consumption micro-hotplates which were developed with PTC (positive temperature coefficient) temperature sensor and inter-digitated electrodes. The paper presents two different structures for micro-hotplate with platinum as a heating element. The PTC temperature sensor using two different materials viz. PdAg and platinum paste are developed with micro-hotplates. The simulation has been achieved through COMSOL for LTCC and alumina micro-hotplates. The temperature variation with power consumption has been measured for the developed LTCC micro-hotplates. The change in resistance of PTC temperature sensors was measured with micro-hotplate temperature. The aim of this study was to place a temperature sensor with the gas sensor module to measure and control the temperature of micro-hotplate. A SnO2 sensing layer is coated on LTCC micro-hotplate using screen printing and characterized for the sensing of carbon monoxide gas (CO). This study will be beneficial for designing hotplates based on LTCC technology with low power consumption and better stability of temperature for gas-sensing applications.  相似文献   
57.
A low temperature co-fired ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 gated field emission array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm × 8 mm) are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to fabricate the newly designed cathode with seven layers wrapped to form the cylinder with electrical traces and vias. Two different cathode wrapping techniques and two different via filling techniques were studied and compared. Two different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity measurements of the fired structure.  相似文献   
58.
《Ceramics International》2020,46(4):4526-4531
To investigate tribological behavior of graphene reinforced chemically bonded ceramic coatings at different temperatures, tribological tests at room temperature, 200 °C and 500 °C were carried out. Results show that the fracture toughness and the hardness of the coating are improved with the introduction of graphene. Besides, the friction coefficient of the coating decreases with the addition of graphene at the room temperature and 200 °C. The coating without graphene achieves the similar friction coefficient at all temperatures. However, the coating with graphene achieves the lowest friction coefficient at 200 °C, and achieves the highest at 500 °C. In addition, the wear rate of the coating decreases with the increase of graphene. Besides, the wear rate at 200 °C is almost similar with that at room temperature. In contrast, the wear rate at 500 °C is much larger than those at room temperature and 200 °C. The mechanisms for graphene to decrease the friction coefficient and improve the wear resistance of chemically bonded ceramic coatings at evaluated temperatures are clarified.  相似文献   
59.
Reactivity between SiC and Ir as a function of SiC-crystallinity was investigated by diffusion bonding technique under a vacuum and over the temperature range of 1200–1450 °C. As reaction products, various Ir-silicides and free unreacted-C were detected. Reactivity is strongly affected by the temperature and SiC-crystallinity involving a series of interactions, from “no reaction” to “massive exothermic reactions”. In particular, interfacial phenomena are more pronounced by the presence of defects and grain boundaries.Solid state reactions result in formation of fine C-precipitates rearranged in a quasi-periodic microstructure. On the contrary, clustering of highly ordered C-precipitates (C-graphitized) occurs after “massive reactions” take place.A relationship between the degree of graphitization (from 1 to multi-layers of graphene), temperature and SiC crystallinity was found by Raman spectroscopy. 2D-layering phenomenon is enhanced in polycrystalline SiC at high temperature.  相似文献   
60.
湿式摩擦副滑摩过程温度场与应力场相互耦合作用,温度场分布受到多种因素影响,其中压力、旋转速度、润滑流量作为湿式摩擦副工作参数对其温度场的影响尤为显著。在理论分析基础上,采用有限元数值模拟分析与实验研究相结合的方法,对摩擦界面温度场时空分布特性进行研究,同时研究界面温度场在摩擦副工作压力、相对转速和润滑流量作用下的变化规律。研究表明:在对偶钢片和摩擦片近外径侧更易出现高温和应力集中区,且对偶钢片相对于摩擦片更易出现温度和应力分布不均匀情况;温度场中高温集中区与应力场中应力集中区相对应,最大温度随着压力增加、相对转速增大、润滑流量减少而显著上升,该结果得到试验结果的验证。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号