首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34013篇
  免费   2619篇
  国内免费   2015篇
电工技术   1246篇
综合类   1970篇
化学工业   11564篇
金属工艺   3580篇
机械仪表   961篇
建筑科学   1715篇
矿业工程   487篇
能源动力   1093篇
轻工业   1491篇
水利工程   95篇
石油天然气   1252篇
武器工业   293篇
无线电   3199篇
一般工业技术   5105篇
冶金工业   1407篇
原子能技术   682篇
自动化技术   2507篇
  2024年   47篇
  2023年   499篇
  2022年   715篇
  2021年   1108篇
  2020年   958篇
  2019年   863篇
  2018年   737篇
  2017年   1006篇
  2016年   1271篇
  2015年   1236篇
  2014年   1680篇
  2013年   1880篇
  2012年   2094篇
  2011年   2740篇
  2010年   2002篇
  2009年   2470篇
  2008年   1921篇
  2007年   2392篇
  2006年   2215篇
  2005年   1768篇
  2004年   1475篇
  2003年   1437篇
  2002年   1001篇
  2001年   729篇
  2000年   700篇
  1999年   518篇
  1998年   377篇
  1997年   316篇
  1996年   292篇
  1995年   261篇
  1994年   232篇
  1993年   204篇
  1992年   182篇
  1991年   171篇
  1990年   122篇
  1989年   96篇
  1988年   69篇
  1987年   70篇
  1986年   82篇
  1985年   76篇
  1984年   69篇
  1983年   56篇
  1982年   59篇
  1981年   54篇
  1979年   46篇
  1978年   46篇
  1977年   53篇
  1976年   58篇
  1975年   69篇
  1974年   70篇
排序方式: 共有10000条查询结果,搜索用时 386 毫秒
11.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
12.
为探究某加氢装置高压换热器管束腐蚀泄漏原因,利用Aspen Plus工艺模拟软件计算了冷低压分离器油相(简称冷低分油)中水质量分数分别为1%,2%,3%时,冷低分油系统的露点温度、氯化铵结晶温度、氯化铵潮解点温度和相对湿度。结果表明:相较于经验的露点温度预测方法,通过引入潮解点、划分系统“湿环境”温度范围判断氯化铵垢下腐蚀风险区域的方法与实际腐蚀案例更为切合;在3种油相含水条件下,换热器管束存在氯化铵垢下腐蚀的“湿环境”温度范围分别为:50~103 ℃,50~161 ℃,50~176 ℃;随着油相中含水量的提高,“湿环境”腐蚀区域逐渐向高温部位迁移,预计铵盐导致的垢下腐蚀将会愈加严重。  相似文献   
13.
Immunoglobulin G4-related disease (IgG4-RD) is a systemic disorder characterized by tissue fibrosis and intense lymphoplasmacytic infiltration, causing progressive organ dysfunction. Activation-induced cytidine deaminase (AID), a deaminase normally expressed in activated B-cells in germinal centers, edits ribonucleotides to induce somatic hypermutation and class switching of immunoglobulin. While AID expression is strictly controlled under physiological conditions, chronic inflammation has been noted to induce its upregulation to propel oncogenesis. We examined AID expression in IgG4-related ophthalmic disease (IgG4-ROD; n = 16), marginal zone lymphoma with IgG4-positive cells (IgG4+ MZL; n = 11), and marginal zone lymphoma without IgG4-positive cells (IgG4- MZL; n = 12) of ocular adnexa using immunohistochemical staining. Immunohistochemistry revealed significantly higher AID-intensity index in IgG4-ROD and IgG4+ MZL than IgG4- MZL (p < 0.001 and = 0.001, respectively). The present results suggest that IgG4-RD has several specific causes of AID up-regulation in addition to inflammation, and AID may be a driver of oncogenesis in IgG4-ROD to IgG4+ MZL.  相似文献   
14.
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.  相似文献   
15.
Herein, this paper reports a facile method to prepare electrospun carbon nanofiber mats (ECNFMs) with high specific surface area and interconnected structure using polyacrylonitrile (PAN) as a precursor and novolac resin (NOC) as a polymer sacrificial pore-making agent. Without additional treatment, the prepared ECNFMs have a highly porous structure because NOC decomposes in a wider temperature range than most polymer activators. The NOC content in the PAN nanofibers shows important effects on porosity. The BET specific surface area of ECNFMs reaches a maximum of 1468 m2 g−1 when the precursor nanofibers contained 30 wt% NOC (ECNFM-3) after carbonization at 1000 °C. The supercapacitor device from ECNFM-3 electrode and all-solid-state electrolyte shows excellent cycling durability and high specific capacitance: ≈99.72% capacitance retention after 10 000 charge/discharge cycles and ≈320 mF cm−2 at 0.25 mA cm−2. Furthermore, it shows a large energy density of ≈11.1 μWh cm−2 under the power density of 500 mW m−2. Activation of carbon nanofibers simply by the addition of NOC into precursor nanofibers can offer a handy way to prepare ECNFMs for high-performance all-solid-state supercapacitors and other potential applications.  相似文献   
16.
This research article aims to study the effect of CdO addition on the radiation shielding characteristics of boro-tellurite glasses in the composition of 50B2O3 - (50-x) TeO2- xCdO, where x = 0, 10, 20, 30, 40 and 50 mol%. These glasses were exposed to gamma radiation and the transmitted gamma photons were evaluated for energies varying from 15 keV to 15 MeV using Geant4 simulation toolkit. The number of transmitted photons was then used to characterize the gamma shielding for the studied glasses in terms of linear/mass attenuation coefficients, MFP, Zeff, and HVL. The simulation outcomes were theoretically confirmed by using Phy-X software. The beta (electron) shielding characterization of the involved glasses was also investigated by determining the projectile range and stopping power using ESTAR software. Additionally, the fast neutron shielding characterization of the glasses was achieved by evaluating removal cross-section (ΣR). The results reveal that the CdO has a small influence on the shielding performance of the boro-tellurite glasses against gamma, beta, and neutron radiations. The shielding performance of the boro-tellurite glasses was compared with that of common shielding materials in terms of MFP. It can be concluded that the boro-tellurite glasses regardless of the concentration of CdO content have promising shielding performance to be used for radiation applications.  相似文献   
17.
In the total stereo-controlled synthesis of natural prostaglandins (PGs) and their structural analogs, a vast class of compounds and drugs, known as the lactones, are encountered in a few key steps to build the final molecule, as: δ-lactones, γ-lactones, and 1,9-, 1,11-, and 1,15-macrolactones. After the synthesis of 1,9-PGF and 1,15-PGF lactones, many 1,15-lactones of E2, E3, F2, F3, A2, and A3 were found in the marine mollusc Tethys fimbria and the quest for understanding their biological role stimulated the research on their synthesis. Then 1,9-, 1,11-, and 1,15-PG lactones of the drugs were synthesized as an alternative to the corresponding esters, and the first part of the paper describes the methods used for their synthesis. The efficient Corey procedure for the synthesis of prostaglandins uses the key δ-lactone and γ-lactone intermediates with three or four stereocenters on the cyclopentane fragment to link the PG side chains. The paper describes the most used procedures for the synthesis of the milestone δ-Corey-lactones and γ-Corey-lactones, their improvements, and some new promising methods, such as interesting, new stereo-controlled and catalyzed enantioselective reactions, and methods based on the chemical/enzymatic resolution of the compounds in different steps of the sequences. The many uses of δ-lactones not only for the synthesis of γ-lactones, but also for obtaining 9β-halogen-PGs and halogen-substituted cyclopentane intermediates, as synthons for new 9β-PG analogs and future applications, are also discussed.  相似文献   
18.
BaSO4 nanoparticles as important functional materials have attracted considerable research interests, due to their X-rays barrier and absorption properties. However, most of BaSO4 nanoparticles prepared by traditional technology are nanopowders with broad size distribution and poor dispersibility, which may greatly limit their applications. To the best of our knowledge, the synthesis of transparent BaSO4 nanodispersions was rarely reported. Here, we firstly present a novel and efficient method to prepare transparent and stable BaSO4 nanodispersions with a relatively small particle size around 10 to 17 nm using a precipitation method in a rotating packed bed (RPB), followed by a modification treatment using stearic acid. Compared with the BaSO4 prepared in a traditional stirred tank, the product prepared using an RPB has much smaller particle size and narrower size distribution. More importantly, by using RPB, the reaction time can be significantly decreased from 20 min to 18 s. Furthermore, the transparent BaSO4-polyvinyl butyral nanocomposite films with good X-ray shielding performance can be easily fabricated. We believe that the stable BaSO4 nanodispersions may have a wide range of applications for transparent composite materials and coatings with X-ray shielding performance for future research.  相似文献   
19.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号