首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   49篇
  国内免费   2篇
电工技术   11篇
化学工业   126篇
金属工艺   13篇
机械仪表   19篇
建筑科学   11篇
能源动力   81篇
轻工业   165篇
水利工程   3篇
石油天然气   4篇
无线电   45篇
一般工业技术   86篇
冶金工业   11篇
原子能技术   5篇
自动化技术   115篇
  2024年   2篇
  2023年   20篇
  2022年   27篇
  2021年   55篇
  2020年   27篇
  2019年   36篇
  2018年   35篇
  2017年   48篇
  2016年   32篇
  2015年   20篇
  2014年   26篇
  2013年   68篇
  2012年   43篇
  2011年   50篇
  2010年   31篇
  2009年   49篇
  2008年   42篇
  2007年   21篇
  2006年   22篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
排序方式: 共有695条查询结果,搜索用时 17 毫秒
101.
Metasurfaces are engineered nanostructured interfaces that extend the photonic behavior of natural materials, and they spur many breakthroughs in multiple fields, including quantum optics, optoelectronics, and biosensing. Recent advances in metasurface nanofabrication enable precise manipulation of light–matter interactions at subwavelength scales. However, current fabrication methods are costly and time-consuming and have a small active area with low reproducibility due to limitations in lithography, where sensing nanosized rare biotargets requires a wide active surface area for efficient binding and detection. Here, a plastic-templated tunable metasurface with a large active area and periodic metal–dielectric layers to excite plasmonic Fano resonance transitions providing multimodal and multiplex sensing of small biotargets, such as proteins and viruses, is introduced. The tunable Fano resonance feature of the metasurface is enabled via chemical etching steps to manage nanoperiodicity of the plastic template decorated with plasmonic layers and surrounding dielectric medium. This metasurface integrated with microfluidics further enhances the light–matter interactions over a wide sensing area, extending data collection from 3D to 4D by tracking real-time biomolecular binding events. Overall, this work resolves cost- and complexity-related large-scale fabrication challenges and improves multilayer sensitivity of detection in biosensing applications.  相似文献   
102.
In this paper, we propose an offline and online machine health assessment (MHA) methodology composed of feature extraction and selection, segmentation‐based fault severity evaluation, and classification steps. In the offline phase, the best representative feature of degradation is selected by a new filter‐based feature selection approach. The selected feature is further segmented by utilizing the bottom‐up time series segmentation to discriminate machine health states, ie, degradation levels. Then, the health state fault severity is extracted by a proposed segment evaluation approach based on within segment rate‐of‐change (RoC) and coefficient of variation (CV) statistics. To train supervised classifiers, a priori knowledge about the availability of the labeled data set is needed. To overcome this limitation, the health state fault‐severity information is used to label (eg, healthy, minor, medium, and severe) unlabeled raw condition monitoring (CM) data. In the online phase, the fault‐severity classification is carried out by kernel‐based support vector machine (SVM) classifier. Next to SVM, the k‐nearest neighbor (KNN) is also used in comparative analysis on the fault severity classification problem. Supervised classifiers are trained in the offline phase and tested in the online phase. Unlike to traditional supervised approaches, this proposed method does not require any a priori knowledge about the availability of the labeled data set. The proposed methodology is validated on infield point machine sliding‐chair degradation data to illustrate its effectiveness and applicability. The results show that the time series segmentation‐based failure severity detection and SVM‐based classification are promising.  相似文献   
103.
We describe a quartz crystal microbalance setup that can be operated at low temperatures in ultra high vacuum with gold electrode surfaces acting as substrate surface for helium diffraction measurements. By simultaneous measurement of helium specular reflection intensity from the electrode surface and resonance frequency shift of the crystal during film adsorption, helium diffraction data can be correlated to film thickness. In addition, effects of interfacial viscosity on the helium diffraction pattern could be observed. To this end, first, flat gold films on AT cut quartz crystals were prepared which yield high enough helium specular reflection intensity. Then the crystals were mounted in the helium diffractometer sample holder and driven by means of a frequency modulation driving setup. Different crystal geometries were tested to obtain the best quality factor and preliminary measurements were performed on Kr films on gold surfaces. While the crystal structure and coverage of krypton films as a function of substrate temperature could successfully be determined, no depinning effects could be observed.  相似文献   
104.
IEEE 802.11 wireless network standard has become one of the most used wireless networking technologies for smart devices as it offers mobility support and low cost deployment. However, these devices deeply rely on the energy provided by their batteries, which results in limited running time. IEEE 802.11 network standard provides stations with carrier sense multiple access with collision avoidance for the medium access. Yet it results in stations to consume an important amount of power. Therefore, minimizing WiFi‐based energy consumption in smart devices has been received substantial attention in both academia and industry. Accordingly, this paper * proposes a novel beacon‐based energy‐efficient collision‐free medium access control protocol for any type of IEEE 802.11 stations, regardless of being stationary or mobile, or having different amount of traffic flow, transmission rates, or traffic types. The proposed scheme is valid for all types of low or wide bandwidth, single or multiuser multiple‐input multiple‐output WLAN channels, such as IEEE 802.11a\b\g\n\ac. In the proposed scheme, energy saving is achieved, enabling stations to transmit on the right time and maintaining stations in the doze state during a predetermined sleep_time interval after each successful frame transmission, by making use of modified control and management frames of the standard IEEE 802.11 protocol. The proposed scheme reduces the probability of collisions and may allow stations to enter the collision‐free state, regardless of the number of stations on the channel and their traffic types. Widespread simulations have been executed to validate the efficiency of the proposed method. The results demonstrate that the proposed method significantly increases overall throughput and reduces power consumption of stations over IEEE 802.11 WLANs.  相似文献   
105.
Nanofibrous structures are promising for biocatalyst immobilization due to their large surface area which facilitates the enzyme attachment, stability, ease of separation, and fine porous structure. There is limited research available on the change in enzyme activity following interaction with cyclodextrin. In this study, catalase enzyme was immobilized into nanofibrous structures by various techniques, with and without γ‐CD addition, and the enzymatic activity of catalase was evaluated. In addition, catalase‐γ‐CD complex containing PEO polymer solution was electrospun in between PCL nanofibrous layers as a newly developed technique. The enzyme immobilized nanofibrous structures were characterized by SEM, XRD, and FT‐IR analysis methods. Among all the activity tests, best enzyme activity was recorded with catalase‐γ‐CD physical mixture encapsulated PCL nanofibrous layers. Moreover, the test results indicated that the use of cyclodextrin in immobilization process considerably improves the catalytic activity of the enzyme. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44404.  相似文献   
106.
This study was performed to investigate the influence of air inlet temperature (AIT) on the microencapsulation of hazelnut oil by spray drying. Encapsulated powders were analyzed for moisture content, powder yield, surface oil, encapsulation efficiency (EE), bulk density, and particle morphology. The obtained results demonstrated that moisture content, surface oil, and bulk density decreased by 37.8, 27.5, and 33%, respectively as AIT increased from 140 to 220°C. However, powder yield and encapsulation efficiency increased considerably with the rise in AIT. Higher EEs of about 75–80% were observed in this study.  相似文献   
107.
\({BaFe_{4-{x}}Pt_{{x}}Sb_{12}}\) (x = 0, 0.1, 0.2) compounds were prepared by melting and annealing, followed by a spark plasma sintering method. Low-temperature thermoelectric and magnetic properties were investigated based on Seebeck coefficient, electrical and thermal conductivity and magnetization measurements. The structural properties of \({BaFe_{4-{x}}Pt_{{x}}Sb_{12}}\) (x = 0, 0.1, 0.2) compounds were ascertained by powder x-ray diffraction analysis, confirming that all samples have a main phase of a skutterudite structure with the space group Im\({\mathrm {\bar{3}}}\). The lattice parameters obtained, 9.202(5), 9.199(5) and 9.202(1) Å for x = 0, 0.1 and 0.2, respectively, were found consistent with literature. The Seebeck coefficient sign shows that holes are dominant carriers in all compounds. The local maximum Seebeck coefficient was observed around 50 K which may be a trace of paramagnon-drag effect of charge carriers. Thermal conductivity and electrical resistivity measurements were carried out between 4.2 and 300 K. Temperature dependence of electrical resistivity reflects that all samples show semi-metallic behavior in our temperature range of 4.2–300 K. Samples for x = 0.1 and x = 0.2 show Kondo-like behavior. In magnetization measurement, we observe that there are two successive magnetic transitions in Pt-substituted compounds; however, there is only one (transition from a paramagnetic state to long-range magnetic ordering) in Pt-free compounds. In Pt-substituted compounds, the first transition appears at \( T _{ {\rm c}}\) = 48 K. In addition, the second transition is observed at \( T _{ {\rm irr}}\) = 30 K where an intermediate state is observed before the magnetic ordering transforms to an irreversible ferromagnetic state. We concluded that Pt substitution on the Fe side effectual on the thermoelectric and magnetic properties of \({BaFe_{4-{x}}Pt_{{x}}Sb_{12}}\) (x = 0, 0.1, 0.2) compounds.  相似文献   
108.
Universal adhesives have been recently introduced for use as self‐etch or etch‐and‐rinse adhesives depending on the dental substrate and clinical condition. However, their bonding effectiveness to laser‐irradiated enamel is still not well‐known. Thus, the aim of this study was to compare the shear bond strength (SBS) of universal adhesives (Single Bond Universal; Nova Compo‐B Plus) applied to Er,Cr:YSGG laser‐irradiated enamel with SBS of the same adhesives applied in self‐etch and acid‐etching modes, respectively. Crown segments of sixty bovine incisors were embedded into standardized acrylic blocks. Flattened enamel surfaces were prepared. Specimens were divided into six groups according to universal adhesives and application modes randomly (n = 10), as follows: Single Bond Universal/acid‐etching mode; Nova Compo‐B Plus/acid‐etching mode; Single Bond Universal/self‐etching mode; Nova Compo‐B Plus/self‐etching mode; and Single Bond Universal/Er,Cr:YSGG Laser‐etching mode; Nova Compo‐B Plus/Er,Cr:YSGG Laser‐etching mode. After surface treatments, universal adhesives were applied onto surfaces. SBS was determined after storage in water for 24 h using a universal testing machine with a crosshead speed of 0.5 mm min?1. Failure modes were evaluated using a stereomicroscope. Data was analyzed using two‐way of analyses of variances (ANOVA) (p = 0.05). Two‐way ANOVA revealed that adhesive had no effect on SBS (p = 0.88), but application mode significantly influenced SBS (p = 0.00). Acid‐etching significantly increased SBS, whereas there are no significant differences between self‐etch mode and laser‐etching for both adhesives. The bond strength of universal adhesives may depend on application mode. Acid etching may significantly increase bond strength, while laser etching may provide similar bond strength when compared to self‐etch mode.  相似文献   
109.
This study was conducted to evaluate the effects of adhesive type, wood species, and finger joint configurations on structural performance of the finger joint. The wood species studied were oriental beech (Fagus orientalis lipsky.), oak (Quercus robur), Scots pine (Pinus sylvestris lipsky.), poplar (Populus tremula lipsk.) and Uludağ fir (Abies bormülleriana Matff.) and adhesives were poly(vinyl acetate) (PVAc), Desmodur-VTKA (D-VTKA). However, there is little information available concerning the bending strength and modulus of elasticity for finger joints in these field. In this study, it was aimed to determine the bending strength and modulus of elasticity for finger joints. For this purpose, samples were tested according to the TS EN 310 standard. It was observed that the highest bending strength and modulus of elasticity were obtained in beech control (solid wood) samples. As for the finger joints, after the control samples, the highest bending strength value (57.4 N/mm2) was obtained from Oriental beech wood samples having a 21 mm finger length and bonded with PVAc adhesive, the highest modulus of elasticity (8885.3 N/mm2) was obtained from beech wood samples having a 21 mm finger length and bonded with PVAc adhesive. As a result of the effects of finger joints on bending strength and modulus elasticity test, if the length of finger joints increases up to 21 mm, the properties of bending strength increase.  相似文献   
110.
In the near future, billions of wireless devices are expected to be operational. To enable the required machine to machine communications, two major problems must be addressed. How to obtain the required spectrum efficiency, and how to deliver the required power to these devices. The most promising answers to these questions are cognitive radio and energy harvesting, respectively. Energy harvesting enables deployment of sensors and devices without having to worry about their battery lifetime. Cognitive radio increases the utilization of spectrum by accessing unused spectrum dynamically. Energy harvesting from electromagnetic waves is suitable for these low power, low cost devices used in machine to machine communications because only minimal additional hardware is required for such energy harvesting. With this idea as the starting point, we first present an analysis on how much throughput can be obtained from a cognitive, electromagnetic energy harvesting wireless network. Then, we show when and how cooperation among network nodes may increase performance. We believe that our results will provide insight for the development of future cooperative cognitive energy harvesting networks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号