首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2207篇
  免费   145篇
  国内免费   178篇
电工技术   11篇
综合类   180篇
化学工业   168篇
金属工艺   447篇
机械仪表   153篇
建筑科学   218篇
矿业工程   51篇
能源动力   28篇
轻工业   29篇
水利工程   38篇
石油天然气   26篇
武器工业   12篇
无线电   50篇
一般工业技术   819篇
冶金工业   244篇
原子能技术   11篇
自动化技术   45篇
  2024年   4篇
  2023年   44篇
  2022年   46篇
  2021年   113篇
  2020年   74篇
  2019年   76篇
  2018年   77篇
  2017年   50篇
  2016年   52篇
  2015年   87篇
  2014年   98篇
  2013年   119篇
  2012年   107篇
  2011年   121篇
  2010年   98篇
  2009年   122篇
  2008年   125篇
  2007年   135篇
  2006年   129篇
  2005年   143篇
  2004年   120篇
  2003年   102篇
  2002年   88篇
  2001年   75篇
  2000年   54篇
  1999年   43篇
  1998年   49篇
  1997年   28篇
  1996年   29篇
  1995年   32篇
  1994年   14篇
  1993年   9篇
  1992年   14篇
  1991年   12篇
  1990年   13篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
排序方式: 共有2530条查询结果,搜索用时 15 毫秒
101.
102.
A new methodology for computational plasticity of nonassociated frictional materials is presented. The new approach is inspired by the micromechanical origins of friction and results in a set of governing equations similar to those of standard associated plasticity. As such, procedures previously developed for associated plasticity are applicable with minor modification. This is illustrated by adaptation of the standard implicit scheme. Moreover, the governing equations can be cast in terms of a variational principle, which after discretization is solved by means of a newly developed second‐order cone programming algorithm. The effects of nonassociativity are discussed with reference to localization of deformations and illustrated by means of a comprehensive set of examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
103.
104.
In the present work, Charpy impact energy of functionally graded steels produced by electroslag remelting composed of graded ferritic or austenitic layers in both crack divider and crack arrester configurations has been modeled by finite element method. The yield stress of each layer was related to the density of the statistically stored dislocations of that layer and assuming by Holloman relation for the corresponding stress-strain curves, tensile strengths of the constituent layers were determined via numerical method. By using load-displacement curves acquired from instrumented Charpy impact tests on primary specimens, the obtained stress-strain curves from uniaxial tensile tests were modified. The data used for each layer in finite element modeling were predicted modified stress-strain curves obtained from strain gradient plasticity theory. A relatively good agreement between experimental results and those obtained from simulation was observed.  相似文献   
105.
106.
We investigate a representative model of continuum infinitesimal gradient plasticity. The formulation is an extension of classical rate‐independent infinitesimal plasticity based on the additive decomposition of the symmetric strain tensor into elastic and plastic parts. It is assumed that dislocation processes contribute to the storage of energy in the material whereby the curl of the plastic distortion appears in the thermodynamic potential and leads to an additional nonlocal backstress tensor. The formulation is cast into a numerical framework by a saddle point approximation of the corresponding minimization problem in each incremental loading step. This allows one to reformulate the (nonlocal) dissipation inequality to a point‐wise flow rule and yields a solution scheme, which is a direct extension of the standard approach in classical plasticity. Our numerical results show the regularizing effects of the additional physically motivated terms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
107.
A continuum approach is presented for predicting the constitutive response of HCP polycrystals using a simple non-hardening constitutive model incorporating both slip and twinning. This has been achieved by considering a physically based methodology for restricting the amount of the twinning activity. A continuum approach is used in modeling the texture evolution that eliminates the need for increasing the number of discrete crystal orientations to account for new orientations created by twinning during deformation. The polycrystal is represented by an orientation distribution function using the Rodrigues parameterization. A total Lagrangian framework is used to model the evolution of microstructure. Numerical examples are used to show the application of the methodology for modeling deformation processes.  相似文献   
108.
Employing a rate-dependent crystal plasticity model implemented in a novel and fast algorithm, two instantiations of an OFHC copper microstructure have been simulated by FE modelling to 11% tensile engineering strain with two different sets of boundary conditions. Analysis of lattice rotations, strain distributions and global stress–strain response show the effect of changing from free to periodic boundary conditions to be a perturbation of a response dictated by the microstructure. Average lattice rotation for each crystallographic grain has been found to be in fair agreement with Taylor-constraint simulations while fine scale element-resolved analysis shows large deviations from this prediction. Locally resolved analysis shows the existence of large domains dominated by slip on only a few slip systems. The modelling results are discussed in the light of recent experimental advances with respect to 2- and 3-dimensional characterization and analysis methods.  相似文献   
109.
应力应变对马氏体相变动力学及相变塑性影响的研究   总被引:6,自引:0,他引:6  
刘春成  姚可夫 《金属学报》1999,35(11):1125-1129
针对应力应变对马氏体相应动力学及相变塑性的影响进行了研究。得到了应力作用下相变动力学和相变塑性的计算模型,而且发现相变前预应变限制了相变塑性的数量和相变反应的速度,使之不能用弹性状态下得到的模型进行简单的外推,并利用应力应变诱导相变,母亲上强化等理论进行了解释。  相似文献   
110.
利用LINSEIS L78 RITA相变仪和Gleeble3800热模拟试验机,测定了FH690海洋工程用钢相变转化的温度点和热塑性区。在1150~780 ℃温度范围时,断面收缩率都在60 %以上,热塑性很好;在1300~1150 ℃温度范围时,属于第Ⅰ脆性区,断裂原因为有大量的液相薄膜存在;在780~620 ℃温度范围时,断面收缩率逐渐降低,属于第Ⅲ脆性区,出现塑性最低值39.5 %,原因是由奥氏体转化成的铁素体膜引起的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号