首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42604篇
  免费   5087篇
  国内免费   3511篇
电工技术   6081篇
综合类   4345篇
化学工业   6629篇
金属工艺   1499篇
机械仪表   1566篇
建筑科学   4887篇
矿业工程   2162篇
能源动力   1494篇
轻工业   4996篇
水利工程   2381篇
石油天然气   1771篇
武器工业   382篇
无线电   1943篇
一般工业技术   3654篇
冶金工业   1033篇
原子能技术   284篇
自动化技术   6095篇
  2024年   115篇
  2023年   852篇
  2022年   1146篇
  2021年   1495篇
  2020年   1637篇
  2019年   1608篇
  2018年   1468篇
  2017年   1585篇
  2016年   1713篇
  2015年   1781篇
  2014年   2484篇
  2013年   2755篇
  2012年   2962篇
  2011年   3221篇
  2010年   2356篇
  2009年   2670篇
  2008年   2389篇
  2007年   2837篇
  2006年   2510篇
  2005年   2167篇
  2004年   1856篇
  2003年   1484篇
  2002年   1225篇
  2001年   1037篇
  2000年   910篇
  1999年   854篇
  1998年   669篇
  1997年   561篇
  1996年   508篇
  1995年   441篇
  1994年   391篇
  1993年   323篇
  1992年   310篇
  1991年   201篇
  1990年   130篇
  1989年   113篇
  1988年   79篇
  1987年   60篇
  1986年   44篇
  1985年   28篇
  1984年   47篇
  1983年   36篇
  1982年   37篇
  1981年   14篇
  1980年   19篇
  1979年   19篇
  1978年   11篇
  1977年   7篇
  1955年   3篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
针对三相整流负载产生的6k±1次谐波,提出静止坐标系下的改进型6k±1重复控制策略。同时将比例控制与改进型重复控制相结合,设计改进重复控制并联比例的复合控制结构。为减小改进重复控制中延时环节不为整数的影响,采用基于Lagrange插值近似的FIR滤波器逼近分数延时特性。最后对系统进行稳定性分析和详细设计方法进行推导。通过Matlab仿真验证改进重复控制策略能有效跟踪6k±1次谐波且具有良好的补偿效果,动态响应较快。  相似文献   
102.
Stable and compatible cathode materials are a key factor for realizing the low-temperature (LT, ≤600?°C) operation and practical implementations of solid oxide fuel cells (SOFCs). In this study, perovskite oxides SrFe1-xTixO3-δ (x?< = 0.1), with various ratios of Ti doping, are prepared by a sol-gel method for cathode material for LT-SOFCs. The structure, morphology and thermo-gravimetric characteristics of the resultant SFT powders are investigated. It is found that the Ti is successfully doped into SrFeO3-δ to form a single phase cubic perovskite structure and crystal structure of SFT shows better stability than SrFeO3-δ. The dc electrical conductivity and electrochemical properties of SFT are measured and analysed by four-probe and electrochemical impedance spectra (EIS) measurements, respectively. The obtained SFT exhibits a very low polarization resistance (Rp), .01 Ωcm2 at 600?C. The SFT powders using as cathode in fuel cell devices, exhibit maximum power density of 551?mW?cm?2 with open circuit voltage (OCV) of 1.15?V at 600?C. The good performance of the SFT cathode indicates a high rate of oxygen diffusion through the material at cathode. By enabling operation at low temperatures, SFT cathodes may result in a practical implementation of SOFCs.  相似文献   
103.
Three types of SiBCN: carbon-lean, -moderate and -rich powders with the same Si/B/N mole ratio were subjected to high-energy ball milling to yield an amorphous structure. The effects of carbon content on microstructures, solid-state amorphization, surface characteristics and thermal stability of the as-milled powders were studied in detail. Results showed that the increases in carbon content can drive solid-state amorphization accompanied by strain-induced, crystallite refinement-induced and/or chemical composition-induced nucleation of nano-SiC from an amorphous body. The specific surface area increases as carbon content increases. The amorphous networks of Si–C, C–B/C–C, C–N, B–N and C–B–N bonds that compose the amorphous nature, but the species and contents of the chemical bonds are carbon content-dependent. Carbon-moderate powders possess satisfying thermal stability while carbon-rich ones perform the worst. Mechanical alloying derived SiBCN powders have outstanding oxidation resistance below 800 °C; however only carbon-moderate powders show desirable anti-oxidation ability at higher temperatures. Thus, mechanical alloying of SiBCN appears a suitable technique for developing amorphous matrix materials for practical applications.  相似文献   
104.
This paper describes the development and fabrication of pastes suitable for screen printing process using Ti3SiC2 as the ceramic filler and ethyl cellulose as the binder. With the aim of obtaining high quality screen printed films, the influence of different amounts of Ti3SiC2 filler (20–40?vol%) and binder (0–5?vol%) on the rheological properties of the pastes was investigated. Samples with higher viscosity, such as pastes containing 30?vol% and 40?vol% Ti3SiC2 filler, regardless of the amount of ethyl cellulose, showed a higher printing quality compared to the samples with other compositions. The different paste compositions were screen printed onto paper-derived Al2O3 substrates containing 28.6 ± 4.8% open porosity and sintered for 1?h under an argon atmosphere at 1600?°C. X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) analysis showed that the sintered films contained TiC as a primary phase and Ti3SiC2 as a secondary phase. The partial decomposition of Ti3SiC2 after sintering can be attributed to residual carbon from the organic additives, which decreases the thermal stability of this material.  相似文献   
105.
Yan Shi  Ning Wang  Li Liu  Yuan Liu 《火与材料》2018,42(2):183-189
Melamine‐formaldehyde foam possesses intrinsic flame retardance; however, relative poor thermal stability and a certain amount of heat release rate restrict its applications in heated environment to a degree. In the present research, sol‐gel method has been adopted to precipitate nano‐SiO2 particles on the surface of the melamine‐formaldehyde foam's fibers to construct a protective inorganic gel layer. Taking advantages of the shielding effects of the gel layer, the thermal‐oxygen degradation of the foam can be greatly retarded during heating; hence, the thermal stability is remarkably improved, and the flame retardance is further enhanced. In addition, introducing a small amount of membrane‐forming agent in the sol‐gel system can make the depositional nano‐SiO2 particles well adhered to avoid dusting.  相似文献   
106.
Introducing graphene into polymer matrix is an effective way to enhance performances of anion exchange membrane (AEM). However, utilizing the advantages of graphene by physical approach is limited due to the weak interface interaction between graphene and polymer matrix. Herein, we report an effective strategy to covalently bond graphene with polymer matrix to improve the interface interaction and further to improve the properties of AEM. A series of cross-linked quaternized graphene-based hybrid AEM were fabricated by covalently bonding poly (vinylbenzyl chloride) grafted graphene (GN-g-PVBC) copolymer with chloromethyl functionalized poly (styrene-b-isobutylene-b-styrene) (SIBS) through the cross-linker (N,N,N′,N′-tetramethyl-1,6-hexanediamine) by in-situ synthetic approach. The interface interaction between graphene and QSIBS is greatly enhanced according to micromorphology characterization of the hybrid membrane. The cross-linked quaternized hybrid AEM containing 0.55 wt% of GN-g-PVBC exhibits obviously improved dynamical mechanical properties (storage modulus: 418 MPa), ion conductivity (1.81 × 102 S cm?1), methanol barrier property (5.19 × 10?7 cm2 s?1), selectivity (3.49 × 104 S s cm?3) at 60 °C and especially a comparably excellent chemical stability to that of Nafion 115 due to the enhanced interface interaction between graphene and the polymer matrix.  相似文献   
107.
The paper is focused on the influence of anode flushing on physicochemical conditions in the anode compartment and anode stability during the electrodewatering in electrofilter press. Kaolin suspensions were dewatered in laboratory filter press with stainless-steel electrodes at electric current density of 80 A/m2 and pressure of 2?bar. Two electrodewatering methods were compared: conventional (with filtrate drainage) and innovative (with continuous anode flushing using electrolyte solution). Flushing with neutral electrolyte solution significantly reduced the electrochemical anode corrosion, and can be suggested for the improvement of anode lifetime through a better control of physicochemical conditions during electrodewatering.  相似文献   
108.
Due to the limited temperature capability of current YSZ thermal barrier coating (TBC) material, considerable effort has been expended world-wide to research new candidates for TBC applications above 1200?°C. Our study suggested that Sc2O3 and Y2O3 co-doped ZrO2 (ScYSZ) had excellent t’ phase stability even after annealed at 1500?°C for 336?h. The thermal expansion coefficient of ScYSZ was comparable to the value of YSZ. The thermal conductivity of fully dense ScYSZ was in the range of 2.13–1.91?W?m?1?K?1 (25–1300?°C), approximately 25% lower than that of YSZ. Although the fracture toughness of dense ScYSZ was slightly lower than YSZ, an evident decline in elastic modulus was found. Additionally, thermal cycling lifetime of plasma sprayed ScYSZ coating (914 cycles) at 1300?°C was about 2.6 times longer than its YSZ counterpart. The superior comprehensive properties confirm that ScYSZ is a prospective candidate material for high-temperature TBC application.  相似文献   
109.
The properties of ZrO2 co-stabilized by CeO2 and TiO2 ceramic bulks were investigated for potential thermal barrier coating (TBC) applications. Results showed that the (Ce0.15Tix)Zr0.85-xO7 (x?=?0.05, 0.10, 0.15) compositions with single tetragonal phase were more stable than the traditional 8YSZ at 1573?K. These compositions also showed a large thermal expansion coefficient (TEC) and a high fracture toughness, which were comparable to those of YSZ. However, the phase stability, fracture toughness and sintering resistance of the CeO2-TiO2-ZrO2 system showed a decline tendency with the increase of TiO2 content. The TEC of the ceramic bulks decreased with increase of TiO2 content as well because the crystal energy was enhanced with increasing substitution of Zr4+ by smaller Ti4+. The (Ce0.15Ti0.05)Zr0.8O2 had the best comprehensive properties among the (Ce0.15Tix)Zr0.85-xO2 compositions as well as a low thermal conductivity. Therefore, it can be explored as a TBC candidate material for high-temperature applications.  相似文献   
110.
Due to high figure of merit, Ca3Co4 ? xO9 + δ (CCO) has potential as p-type material for high-temperature thermoelectrics. Here, the influence of processing including solid state sintering, spark plasma sintering and post-calcination on stability, microstructure and thermoelectric properties is reported. By a new post-calcination approach, single-phase materials were obtained from precursors to final dense ceramics in one step. The highest zT of 0.11 was recorded at 800 °C for CCO with 98 and 72% relative densities. In situ high-temperature X-ray diffraction in air and oxygen revealed a higher stability of CCO in oxygen (~970 °C) than in air (~930 °C), with formation of Ca3Co2O6 which also showed high stability in oxygen, even at 1125 °C. Since achievement of phase pure high density CCO by post-calcination method in air is challenging, the phase stability of CCO in oxygen is important for understanding and further improvement of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号