首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   5篇
  国内免费   11篇
电工技术   48篇
综合类   15篇
化学工业   299篇
金属工艺   44篇
机械仪表   22篇
矿业工程   8篇
能源动力   300篇
轻工业   12篇
石油天然气   1篇
无线电   19篇
一般工业技术   43篇
冶金工业   23篇
原子能技术   3篇
自动化技术   10篇
  2023年   11篇
  2022年   18篇
  2021年   28篇
  2020年   24篇
  2019年   26篇
  2018年   24篇
  2017年   23篇
  2016年   15篇
  2015年   14篇
  2014年   25篇
  2013年   46篇
  2012年   28篇
  2011年   99篇
  2010年   71篇
  2009年   72篇
  2008年   53篇
  2007年   56篇
  2006年   37篇
  2005年   23篇
  2004年   28篇
  2003年   11篇
  2002年   11篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   11篇
  1997年   2篇
  1996年   11篇
  1995年   9篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   9篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有847条查询结果,搜索用时 31 毫秒
121.
The sorption of water–methanol mixtures containing a dissolved chloride salt in a Nafion 117 membrane, and their transport through the membrane under the driving force of a pressure gradient, have been studied. Both type of experiments was performed by using five different salts: lithium chloride, sodium chloride, cesium chloride, magnesium chloride and calcium chloride. It was observed that both the permeation flow through the membrane and the membrane swelling increase significantly with the methanol content of the solutions. These facts are attributed to the increase in wet membrane porosity, which brings about the increase of the mobility of solvents in the membrane, besides the increase of the mobility of the polymer pendant chains. In contrast, the influence of the type of electrolyte on the membrane porosity and permeability is not very important, with the exception of the CsCl solutions, which is probably due to the small hydration ability of the Cs+ ion.  相似文献   
122.
在说明VRLA蓄电池与普通铅酸蓄电池主要判别的基础上,阐述实现VRLA蓄电池内部氧循环的两种方法,电解液的保持体超细玻璃纤维棉(AGM)和触变性凝胶(Gel)构成的VRLA蓄电池的特点与差异。  相似文献   
123.
本文介绍了胶体蓄电池的制作,探讨了当硫酸浓度一定时,硅酸钠浓度与胶凝时间的关系,当硅酸钠浓度一定时,硫酸浓度与胶凝时间的关系。通过反复实验筛选出了性能较好的缓凝剂,使灌装的蓄电池有更好的性能。  相似文献   
124.
Nitrogen heterocyclic compounds, such as N-methylbenzimidazole (MBI), are commonly used as additives to electrolytes for dye-sensitized solar cells (DSCs), but the chemical transformation of additives in electrolyte solutions remains poorly understood. Solid crystalline compound (MBI)6(MBI-H+)2(I)(I3) (1) was isolated from different electrolytes for DSCs containing MBI as additive. The crystal structure of 1 was determined by single-crystal X-ray diffraction. In the crystal structure, 1 contains neutral and protonated MBI fragments; iodide and triiodide anions form infinite chains along the crystallographic a-axis. The role of the solvent and additives in the crystallization process in electrolytes is discussed.  相似文献   
125.
Bilayered Y2O3-stabilized ZrO2 (YSZ)/Sm2O3-doped CeO2 (SDC) electrolyte films were successfully fabricated on porous NiO–YSZ composite substrates by electrophoretic deposition (EPD) based on electrophoretic filtration followed by co-firing with the substrates. In EPD, positively charged YSZ and SDC powders were deposited directly on the substrates, layer by layer from ethanol-based suspensions. Delamination between YSZ and SDC films was avoided by reducing the SDC films’ thickness to ca. 1 μm. A single cell was constructed on the bilayered electrolyte films composed of ca. 4 μm-thick YSZ and ca. 1 μm-thick SDC films. As a cathode in the cell, La0.6Sr0.4Co0.2Fe0.8O3−x (LSCF) was used. Maximum output power densities greater than 0.6 W cm−2 were obtained at 700 °C for the bilayered YSZ/SDC electrolyte cells thus constructed.  相似文献   
126.
Yttria stabilized zirconia (YSZ) has widely been used as an electrolyte in solid oxide fuel cell (SOFC) stacks. The microstructure and properties of YSZ related to the fabrication process are discussed in this paper. For the named two-step sintering process, uniform and hexagonal grains with a size of 1–4 μm were obtained from the adobe following tape calendaring (TCL). Elliptical and hexagonal grains with a size of 0.4–3 μm were obtained from the adobe of tape casting (TCS) using the three-step process. The electrical conductivities of YSZ with different grain sizes were measured via the four-probe DC technique and grain conductivities and grain boundary conductivities of YSZ were investigated by impedance spectroscopy. YSZ electrolytes with a grain size of 0.1–0.4 μm had the highest electrical conductivity in the range of 500–1000 °C, especially at medium and low temperatures 550–800 °C. As the YSZ grain size becomes small, the thickness of the intergranular region decreased greatly. The YSZ electrolytes with sub-micrometer grain sizes, high ion conductivity and low sintering temperatures are important to the electrode-supported SOFC, on which the dense YSZ electrolyte films are optimized at 10 μm.  相似文献   
127.
The influence of alkylpyridines additive to an I/I3 redox electrolyte in acetonitrile on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell was studied. IV measurements were performed using more than 30 different alkylpyridines. The alkylpyridine additives showed a significant influence on the performance of the cell. All the additives decreased the short-circuit photocurrent (Jsc), but most of the alkylpyridines increased the open-circuit photovoltage (Voc) and fill factor (ff) of the solar cell. The results of the molecular orbital calculations suggest that the dipole moment of the alkylpyridine molecules correlate with the Jsc of the cell. These results also suggest that both the size and ionization energy of pyridines correlate with the Voc of the cell. Under AM 1.5 (100 mW/cm2), the highest solar energy conversion efficiency (η) of 7.6% was achieved by using 2-propylpyridine as an additive, which was more effective than the previously reported additive, 4-t-butylpyridine.  相似文献   
128.
Comparison of surface and interfacial properties of internal olefin sulfonates (IOS) and alpha olefin sulfonates (AOS) shows that hydrocarbon chain branching has a significant influence on interfacial properties at the air–water, pentadecane–water and parafilm–water interfaces. The isomeric branched IOS shows a higher critical micelle concentration and are more effective in reducing the surface tension at the air–water interface by occupying a larger area per molecule. IOS exhibits better dynamic air–water interfacial properties due to a lower meso-equilibrium surface tension. The equilibrium interfacial tensions for AOS and IOS have no remarkable difference at the pentadecane–water interface. The water wettability and electrolyte tolerance are enhanced with branched hydrocarbon chain olefin sulfonates.  相似文献   
129.
130.
The effect of co-doping of Sr and Al or Fe on the microstructure, sinterability and oxide-ion conductivity of lanthanum silicate oxyapatites is investigated in detail at 300–800 °C by the electrochemical impedance spectroscopy. The oxide-ion conductivity is 1.46 × 10−2 S cm−1 for La9.5Sr0.5Si5.5Fe0.5O26.5 (LSSFO) and 1.34 × 10−2 S cm−1 at 800 °C for La9.5Sr0.5Si5.5Al0.5O26.5 (LSSAO), respectively, which is one order of magnitude higher than 6.16 × 10−3 S cm−1 measured on La9.67Si6O26.5 (LSO) oxyapatite under the identical test conditions. The grain bulk and grain boundary resistances of co-doped oxyapatite are significantly smaller than that of LSO oxyapatite, and decrease significantly with the increase of the sintering temperature. LSSFO and LSSAO also show significantly higher density as compared to that of LSO. The results indicate that co-doping of Sr and Al or Fe significantly improves the densification, sinterability and oxide-ion conductivity of lanthanum silicate oxyapatites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号