首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   15篇
电工技术   12篇
综合类   1篇
化学工业   45篇
金属工艺   4篇
机械仪表   2篇
建筑科学   4篇
能源动力   1篇
轻工业   7篇
水利工程   1篇
石油天然气   3篇
无线电   50篇
一般工业技术   15篇
冶金工业   13篇
自动化技术   28篇
  2023年   5篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   16篇
  2018年   20篇
  2017年   6篇
  2016年   5篇
  2015年   8篇
  2014年   12篇
  2013年   17篇
  2012年   9篇
  2011年   8篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有186条查询结果,搜索用时 468 毫秒
181.
Developing a simple and efficient approach to formulate biodegradable nanoparticles for intravenous delivery of sodium valproate (a hydrophilic small molecule drug chronically used in epileptic patients), is the principal objective of the current study. To fabricate particles via ionotropic gelation approach, a polycation polymer (chitosan) along with a polyanion (tripolyphosphate) was utilized in the presence of sodium valproate, and the Taguchi experimental design method was drawn upon so as to determine the optimum conditions of nanoparticle generation. In the following step, the researchers investigated sodium valproate‐loaded nanoparticles to explore various features of the nanoparticles including drug loading parameters, particle size distribution, zeta‐potential, morphology, stability, yield, and in vitro drug release profile. Nanoparticles with sizes of 63 ± 1 nm (number‐based) and 79 ± 3.21 (volume‐based) were obtained with slightly negative zeta–potential, which was more positive in drug‐loaded nanoparticles than the unloaded ones. The TEM imaging of the hydrogel nanoparticles manifested spherical shapes and corroborated the size achieved via particle size analyzer. The loading efficiency, loading amount, and loading ratio were determined to be 21.81 ± 3.90%, 10.31 ± 1.82 (mg sodium valproate/g nanoparticle) and 23.70 ± 4.54%, respectively, in optimum conditions. Moreover, there was observed a gradual drug release for nearly a week consisting, in average, about 94.64 ± 2.71% of the nanoparticles' drug content. In a nutshell, the present study introduces a practical, simple, and effective ionotropic gelation approach to generate sodium valproate‐loaded nanoparticles, leaving open a window of promising prospects in the field of intravenous long‐term delivery of this chronically used drug. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
182.
Escherichia coli O157:H7 is an important foodborne pathogen. Cattle serve as one of the major reservoirs of E. coli O157:H7, excreting the pathogen in feces. Environmental persistence of E. coli O157:H7 is critical in its epidemiology on farms, and the pathogen has been isolated from cattle water troughs. Thus, there is a need for an effective method for killing E. coli O157:H7 in cattle drinking water. In this study, the efficacy of sodium caprylate for killing E. coli O157:H7 in cattle drinking water was investigated. A four-strain mixture of E. coli O157:H7 was inoculated (6.0 log CFU/ml) into 100-ml samples of well water containing 0, 75, 100, or 120 mM sodium caprylate. Water samples containing 1% (wt/vol) bovine feces or feed also were included. The samples were incubated at 21 or 8 degrees C for 21 days. Water samples were analyzed for viable E. coli O157:H7 on days 0, 1, 3, 5, and 7 and weekly thereafter. Triplicate samples of each treatment and control were included, and the study was repeated twice. The magnitude of E. coli O157:H7 inactivation in water significantly increased (P < 0.01) with increases in caprylate concentration and storage temperature. At 120 mM, sodium caprylate completely inactivated E. coli O157:H7 in all the samples after 1 to 20 days, depending on the treatments. The presence of feces or feed also had a significant effect (P < 0.01) on the antibacterial property of caprylate; the presence of feces decreased the antibacterial effect, whereas addition of feed enhanced the effect. These results indicate that sodium caprylate is effective in killing E. coli O157:H7 in cattle drinking water, but detailed cattle palatability studies of water containing caprylate are necessary.  相似文献   
183.
低功耗双边沿触发器的逻辑设计   总被引:11,自引:1,他引:10  
本文从消除时钟信号冗余跳变而致的无效功耗的要求出发,提出双边沿触发器的设计思想与基于与非门的逻辑设计.用PSPICE程序模拟证实了该种触发器具有正确的逻辑功能,能够正常地应用于时序电路的设计,并且由于时钟工作频率减半而导致系统功耗的明显降低.  相似文献   
184.
Natural polymer-based sutures have attractive cytocompatibility and degradability in surgical operations. Herein, anionic cellulose nanofibrils (ACNF) and cationic guar gum (CGG) are employed to produce nontoxic CGG/ACNF composite filament with a unique core–shell structure via interfacial polyelectrolyte complexation (IPC) spinning. The comprehensive characterization and application performance of the resultant CGG/ACNF filament as a surgical suture are thoroughly investigated in comparison with silk and PGLA (90% glycolide and 10% l -lactide) sutures in vitro and in vivo, respectively. Results show that the CGG/ACNF filament with the typical core–shell structure and nervation pattern surface exhibits a high orientation index (0.74) and good mechanical properties. The tensile strength and knotting strength of CGG/ACNF suture prepared by twisting CGG/ACNF filaments increase by 69.5%, and CGG/ACNF suture has a similar friction coefficient to silk and PGLA sutures. Moreover, CGG/ACNF suture with antibiosis and cytocompatibility exhibits better growth promotion of cells than silk suture, similar to PGLA suture in vitro. In addition, the stitching experiment of mice with the CGG/ACNF suture further confirms better healing properties and less inflammation in vivo than silk and PGLA sutures do. Hence, the CGG/ACNF suture with a simple preparation method and excellent application properties is promising in surgical operations.  相似文献   
185.
Fragility curves development in structures has always been a focus of research interest among structural and earthquake engineers for which the maximum story drift is usually considered as the engineering demand parameter (EDP) known as the conventional approach. This paper aims at calculating the fragility curves of a tall building with outrigger braced system by considering the plastic strain energy as the EDP and compare it with the conventional approach. In addition, the effect of optimizing the position of outriggers on the exceedance probability of the structure under near- and far-fault seismic loadings is investigated in this paper. Fragility curves of this structure in four performance levels including immediate occupancy (IO), life safety (LS), collapse prevention (CP), and instability is extracted based on the conventional method. The fragility curves for the aforementioned performance levels are also extracted based on the plastic strain energy and compared with the conventional approach. The results have demonstrated that optimizing the location of the bracing system would lower the exceedance probability of the structure. Moreover, the exceedance probability of the investigated building with outrigger braced system under far-fault records in various levels is more than that of near-fault records. It is also concluded that the conventional approach would lead to more conservative results compared with the energy approach.  相似文献   
186.
Pedram  Shiva  Kennedy  Grace  Sanzone  Sal 《Virtual Reality》2023,27(3):2255-2280
Virtual Reality - The latest technological advancements in the domain of virtual reality (VR) have created new opportunities to use VR as a training platform for medical students and practitioners...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号