首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   24篇
  国内免费   23篇
综合类   15篇
化学工业   214篇
机械仪表   1篇
建筑科学   10篇
矿业工程   13篇
能源动力   1篇
轻工业   5篇
水利工程   2篇
石油天然气   26篇
一般工业技术   4篇
冶金工业   2篇
自动化技术   4篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   20篇
  2012年   15篇
  2011年   16篇
  2010年   20篇
  2009年   17篇
  2008年   13篇
  2007年   12篇
  2006年   22篇
  2005年   16篇
  2004年   18篇
  2003年   12篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   16篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
21.
在三相搅拌气升式气反应中研究了气体流速、机械搅拌速度和氧浓度等参数对葡萄糖氧化反应过程的影响。根据多相催化反应Langmuir-Hinshelwood模型导出反应器中氧气、葡萄糖、葡萄糖酸的质量平衡微分方程,利用柔性单纯形法优化算出该反应系统的传质系数kLa和参数α,得到氧的动力学级数α约为0.6。  相似文献   
22.
在空气-水两相多室气升式环流反应器(MALR)中,采用欧拉欧拉两相流模型对扇形反应室内气液两相流动过程进行了数值模拟研究,考察了上升室的气含率、液体速度随表观气速的变化,最后用实验数据对模拟结果进行了验证.结果表明,某一上升室气含率受该室表观气速的影响较大,与另一上升室表观气速的影响较小;循环液体与上升室流体流动型式有关;气含率和循环液速的模拟值与实验值的平均相对误差分别为5.36%和8.28%;说明了应用数值模拟方法研究MALR流动特性的可行性.  相似文献   
23.
刘永民  袁乃驹 《石油化工》2005,34(2):128-131
研究了在多室环流反应器(MALR)中用模拟催化裂化干气和空气制乙醛的过程,考察了MALR中气含率和液体循环速率与上升室表观气速之间关系的同时,还考察了反应温度、反应压力、原料气中乙烯含量及催化剂溶液中Pd2+含量对乙烯单程转化率和乙醛选择性的影响。实验结果表明,MALR中气体流速在0.461~0.545cm/s内气含率较大,液体循环速率仅在2.5~3.2cm/s较窄的范围内变化;合成乙醛的最佳条件为:反应温度100~120℃、反应压力0.5~0.6M Pa、催化剂溶液中Pd2+质量浓度0.6~0.9g/L。  相似文献   
24.
A mathematical model for the simulation of water airlift pumps is developed, based on the “interspersed continua” approximation for two-phase flow systems, together with an algorithm that selects the appropriate friction correlation for specific flow regimes. The model presented can either predict the water or air flow rate for a given airlift system. Predictions obtained by the model were compared with a series of experiments performed by the Greek Institute of Geological and Mineral Exploration and were found to be in good agreement. The present predictions are far superior to those obtained by an existing simple model currently in general use.  相似文献   
25.
The hydrodynamic study of a three‐phase airlift (TPAL) bioreactor with an enlarged gas–liquid dual separator was carried out. Different lengths and diameters of the draft tube were tested to show how the design of the separator zone affects the hydrodynamic performance of the TPAL reactor. Ca‐alginate beads with entrapped yeast biomass at different loadings (0, 7, 14 and 21% v/v) were used in order to mimic the solid phase of conventional high cell density systems, such as those with cells immobilized on carriers or flocculating cells. Important information on multiphase flow and distribution of gas and solid phases in the internal‐loop airlift reactor (ALR) with high solids loading was obtained, which can be used for suggesting optimal hydrodynamic conditions in a TPAL bioreactor with high solids loading. It is finally suggested that the ALR with a dual separator and a downcomer to riser cross‐sectional area ratio (AD/AR) ranging from 1.2 to 2.0 can be successfully applied to batch/continuous high cell density systems, where the uniform distribution of solid phase, its efficient separation of particles from the liquid phase, and an improved residence time of air bubbles inside the reactor are desirable. Copyright © 2003 Society of Chemical Industry  相似文献   
26.
An external loop airlift bioreactor (ELAB) has been used to capture and degrade toluene from a contaminated air stream. Using a spinning sparger, the toluene could be transferred from small, uniform bubbles into the aqueous culture media with an overall mass transfer coefficient as high as 1.1 h?1. Due to the very volatile nature of toluene, Pseudomonas putida (ATCC 23973) was cultured and maintained on benzyl alcohol, the first intermediate compound in the metabolic degradation pathway for toluene. Consequently, before successful continuous operation of the ELAB with toluene‐contaminated air, Pseudomonas putida was acclimatized to toluene by using 30 min intermittent sparging of contaminated air into the bioreactor. Continuous sparging of toluene‐contaminated air could then be successfully carried out with 100% capture and biodegradation efficiency at a contaminated air concentration of 15 mg dm?3 and a loading rate of 35 mg dm?3 h?1. Higher concentrations and loading rates were only partially degraded. Although this capture matches only the low rates reported earlier using biofilters to remediate toluene, the ELAB operates using submerged culture and requires no packing which can plug during biofilter operation. In this study, Pseudomonas putida grew on toluene at a maximum specific growth rate of only 0.05 h?1. © 2003 Society of Chemical Industry  相似文献   
27.
The mixing and mass transfer characteristics of draft‐tube airlift bioreactors (DTAB) for a water‐in‐kerosene microemulsion, as a cold model of petroleum biodesulfurization, were studied. Incomplete gas disengagement at the top‐section of the DTAB and hence high gas recirculation were obtained with the microemulsion system for all the top‐section configurations employed in the present study especially at the high airflow rates. The ratio (S) of the volumes of the riser and the downcomer to the top‐section together with the gas disengagement abilities of the gas separator were both found to affect the mixing performance of the DTAB employed for the microemulsion system. Increase in the draft‐tube height resulted in significant increase in the mixing time (tm) and a slight increase in the overall volumetric oxygen transfer coefficient (kLa). Increase in the diameter of the top‐section and the height of the liquid above the draft‐tube led to a decrease in kLa, the latter effect being less prominent. New correlations were developed that predicted the mixing time and oxygen transfer coefficients obtained in the present work with reasonable accuracy. Copyright © 2004 Society of Chemical Industry  相似文献   
28.
Suspension cultures of tobacco cells were studied using airlift and rotary-drum bioreactors. The effect of initial concentrations of a major substrate, sucrose, on the growth and production of a secondary metabolite, phenolic compounds, was investigated. The dry weights and total concentrations of the phenolic compounds increased with the initial sucrose concentration in both bioreactors. Both bioreactors were found to have the same tendency for the effect of initial sucrose concentration. The structured model, presented previously was modified by considering that sucrose was hydrolyzed to glucose and fructose by an enzymatic reaction. The previous and the new models were applied to the above two sets of experimental data obtained with two bioreactors, independently. The hydrolysis of sucrose was elucidated to contribute slightly to the overall kinetics of growth and secondary metabolite production in these cultures. Furthermore, the levels of shear damage in each bioreactor were quantitatively compared based on the death rate constant, ki, which is one of the model constants.  相似文献   
29.
气升式环流反应器强制振荡周期对传质影响的研究   总被引:2,自引:0,他引:2  
在同一反应器中比较了不同振荡周期下的气液传质特性,为最优强制振荡周期的确定提供了实验依据和分析基础。选择体积传质系数及气含率作为传质研究的主要评价指标,实验结果表明,动态操作下的传质效果明显优于稳态,而不同振荡周期传质效果也大不一样。在0.8~2.4m3h-1的气速范围内,由静压力、导流管顶部截面流体速度、全床气含率(及传质系数)周期性变化所确定的振荡周期TP、TV、TK比稳态操作下的全床平均传质系数分别提高了3.92%~27.3%,2.35%~24.5%,28.2%~43.3%。由反应器内全床平均气含率或传质系数确定的振荡周期TK是最佳振荡周期。  相似文献   
30.
Global hydrodynamic characteristics, liquid mixing and gas‐liquid mass transfer for a 63 L split‐rectangular airlift reactor were studied. Correlations for gas holdup and overall liquid circulation velocity were derived for the air‐water system as a function of the specific power input; these were compared to data and correlations for reactor volumes between 4.7 L and 4600 L. A partial recirculation of small bubbles in the riser was observed when Ugr > 0.03 m/s, which was attributed to the use of a single‐orifice nozzle as the gas phase distributor. The dimensionless mixing time and the overall axial dispersion coefficient were nearly constant for the range of gas flow rates studied. However, values of KL/dB were greater than those reported in previous studies and this is caused by the partial recirculation of the gas phase in the riser. While scale effects remain slight, the use of a gas distributor favouring this partial recirculation seems adequate for mass transfer in split‐rectangular airlift reactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号