首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2807篇
  免费   419篇
  国内免费   178篇
电工技术   19篇
技术理论   1篇
综合类   241篇
化学工业   1390篇
金属工艺   148篇
机械仪表   15篇
建筑科学   87篇
矿业工程   39篇
能源动力   94篇
轻工业   88篇
水利工程   11篇
石油天然气   72篇
武器工业   5篇
无线电   202篇
一般工业技术   908篇
冶金工业   75篇
原子能技术   2篇
自动化技术   7篇
  2024年   4篇
  2023年   119篇
  2022年   96篇
  2021年   148篇
  2020年   172篇
  2019年   150篇
  2018年   135篇
  2017年   140篇
  2016年   164篇
  2015年   149篇
  2014年   158篇
  2013年   147篇
  2012年   211篇
  2011年   252篇
  2010年   156篇
  2009年   174篇
  2008年   138篇
  2007年   216篇
  2006年   176篇
  2005年   176篇
  2004年   117篇
  2003年   66篇
  2002年   53篇
  2001年   31篇
  2000年   23篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1980年   1篇
排序方式: 共有3404条查询结果,搜索用时 62 毫秒
21.
Dense photocatalyst slurry was employed for the synthesis of p-anisaldehyde under solar light irradiation. An Fe-modified rutile TiO 2 (Fe-TiO 2, 34.5 m 2/g) photocatalyst was used as a visible-light-responsive photocatalyst. A conventional TiO 2 (P25, 35 m 2/g) photocatalyst was also examined as a reference catalyst. XRD patterns and diffuse reflectance spectra showed that Fe-TiO 2 consists of 100 % rutile phase and absorbs more visible light compared to P25, respectively. The catalyst powder was suspended in an ethyl acetate solution of p-methoxytoluene in the mini-reactor, with oxygen bubbling, under a solar simulator, visible light, and UV LEDs. p-anisaldehyde, as a reaction product, was analyzed by sampling using gas-chromatograph. Regardless of the light source, Fe-TiO 2 always outperformed P25 in terms of both generation rates (GR) of p-anisaldehyde and energy requirements (ER). It was demonstrated that the highly dense Fe-TiO 2 slurry was efficient for the synthesis under solar light owing to the small size of the reactor. The small amount of Pt and ZrO 2 cocatalysts significantly enhanced the GR under solar light. By adopting a visible light responsive Fe-TiO 2 photocatalyst, the mini slurry-bubble reactor under solar light achieved a high GR per catalyst mass (CM), which is one to two orders higher than that reported by most previous studies with high-power lamps.  相似文献   
22.
With an increase in awareness about the need for green chemistry, there is a shift in focus towards identifying eco-compatible technologies that can improve product yield and eliminate the use or generation of hazardous compounds. An immediate practical example of such an approach is the development of sustainable methods for alcohol oxidation as alternatives to the current processes that are energy intensive and rely on ecotoxic chemicals. In this regard, heterogeneous photocatalysis has been identified as a robust technique to catalyze reactions under benign conditions, which would otherwise require harsh synthesis routes. With the advent of materials sciences and nanotechnology, there has been a tremendous increase in the scope of applicability of photocatalysis in fine chemicals synthesis. Though an attractive choice, much of the fundamental information pertaining to catalyst activity, selectivity and reaction conditions for optimum conversion are still to be investigated for most of these systems. To this end, this review will encompass recent achievements in the selective photocatalytic oxidation of alcohols by harnessing solar radiation as a viable source of energy. The discussion will be arranged based on common types of photocatalysts reported in literature, namely metal oxides (eg, TiO2 and ZnO, Nb2O5), sulphides (eg, CdS, CuS, and Bi2S3), and carbonaceous photocatalysts (eg, g-C3N4). Several such candidates for photocatalysts will be discussed critically with the aim of providing useful insight into developing selective photocatalysts that can oxidize alcohols via eco-friendly pathways along with high yields.  相似文献   
23.
Ethane (C2H6) is a main component of natural gas and a notable contributor to photochemical pollution and ozone production in the atmosphere. It is important to convert ethane to useful chemicals. The photocatalytic conversion of ethane is promising but challenging. As the first review article in this area, we summarize the recent important progresses in photocatalytic ethane conversion, with an emphasis on (1) homogeneously functionalization and (2) heterogeneously partial oxidation of ethane. Furthermore, the challenges and future directions are provided for the photocatalytic conversion of ethane.  相似文献   
24.
以1-甲基咪唑和氯代正丁烷为原料,合成1-丁基-3-甲基咪唑氯盐离子液体;以醋酸锌[Zn(Ac)2]、硫酸锌(ZnSO4)和氯化锌(ZnCl2)为锌源,在1-丁基-3-甲基咪唑氯盐离子液体和丙氨酸体系中与硝酸铈反应,经水热合成法制备得到Ce掺杂的纳米ZnO。采用扫描电子显微镜(SEM)、紫外-可见光吸收光谱(UV-Vis)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)和红外光谱(FT-IR)对产品进行表征。以亚甲基蓝(MB)为目标降解物,采用UV-Vis检测,考察了Ce掺杂的纳米ZnO的光催化活性。研究表明,焙烧温度对光催化的晶体结构和光催化活性产生较大的影响;2%Ce/ZnO、焙烧温度为500℃、催化时间为30 min、亚甲基蓝用量0.05 g、pH值为10时降解率可达99.5%以上。  相似文献   
25.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
26.
《Advanced Powder Technology》2020,31(8):3582-3596
BiOBr and BiOCl were decorated on TiO2 QDs through n-p-p heterojunctions by a simple strategy and they were applied for degradation of three organic dyes upon visible illumination. The obtained photocatalysts were analyzed via XRD, FESEM, EDX, UV–vis DRS, PL, BET, TEM, HRTEM, FT-IR, EIS, XPS, and transient photocurrent measurements. The TiO2 QDs/BiOBr/BiOCl nanocomposite with 20% wt. of BiOBr and 30% wt. of BiOCl displayed superior photoability in the degradation of methylene blue, rhodamine B, and fuchsine, which was almost 34.5, 176, and 78.7-times larger than TiO2 and 27.8, 13.5, and 51.5-folds greater than TiO2 QDs, respectively. The results show that the construction of intimate n-p-p heterojunctions between BiOBr, TiO2 QDs, and BiOCl counterparts leads to enhanced visible-light harvesting and improved charge separation, resulted efficiently increased photocatalytic activity. The trapping results proved that h+, O2, and OH species have considerable effects on the degradation reaction. We think that the improved efficiency of the ternary TiO2 QDS/BiOBr/BiOCl photocatalyst is a splendid alternative for the removal of toxic contaminants from wastewater.  相似文献   
27.
28.
A novel rice spike-like g-C3N4/TiO2 nanowire heterojunctions are fabricated by hydrothermal treating Na2Ti3O7 ultralong nanotubes in the presence of g-C3N4. The presence of g-C3N4 promotes the hydrolysis of Na2Ti3O7 ultralong nanotubes. The partially replaced O of TiO2 by N from g-C3N4 leads to the formation of a tight-binding interface between one dimensional TiO2 and two dimensional g-C3N4, which is crucial for fast and effective transfer of photogenerated electrons in heterostructured photocatalysts. As a result, the g-C3N4/TiO2 nanowire heterojunctions exhibit excellent visible-light photocatalytic activity. The kinetic constant (k) of g-C3N4/TiO2 (0.024?min?1) for degradation of methylene blue under visible light irradiation is 1.85 and 4 times than that of pure g-C3N4 and P25, respectively.  相似文献   
29.
Constructing heterojunction provides a promising tactic to improve the photocatalytic efficiency of catalysts. In this paper, hierarchical FeIn2S4/BiOBr heterostructure photocatalysts were prepared by facile two step methods and applied to effectively remove ciprofloxacin (CIP) and tetracycline (TC) under visible light. Compared to single catalyst, FeIn2S4/BiOBr hybrids display significantly improved photocatalytic activity. Among the series, 6 wt% FeIn2S4/BiOBr shows the optimal photocatalytic performance, where the degradation efficiencies of TC and CIP are 3.15 and 2.88 times greater than pure BiOBr, respectively. Such an improvement could arise from the S-scheme heterojunctions and unique hierarchical structures, which brings stronger light absorption, higher photoexcited charge separation efficiency and superior redox ability. Furthermore, 6 wt% FeIn2S4/BiOBr composite exhibits excellent stability and reusability. Radical capture experiments and EPR analyses uncover that O2, h+ and OH are primarily reactive substances during photocatalytic removal of TC. The products of TC were detected by LC-MS analyses and possible decomposition paths are proposed. Eventually, a possible photodegradation mechanism over FeIn2S4/BiOBr S-scheme heterojunction is proposed. These findings supply new perspective for the simple synthesis of S-scheme photocatalysts with promising applications in environment remediation.  相似文献   
30.
In this study the constructional modification of Graphitic carbon nitride nanosheet (GCN-ns) has been made with the aid of ZnCr layered double hydroxide (ZC-LDH) in a unique 2D-2D structure to enhance its visible light absorption. Optical and morphological study presents successful incorporation of ZC-LDH on the surface of GCN-ns. Through adjusting of GCN-ns by ZC-LDH lower recombination rate of e?/h+ pairs, longer lifetimes and an increase in contamination reduction was brought out. The binary nanocomposite was employed to effectively degrade Rhodamine B under UV/vis light irradiation. The improvement in photocatalytic abilities was proven to be related to in situ self-production of H2O2 on GCN-ns/ZC-LDH surface by Xe light irradiation which in return accounts for additional hydroxide radical generation. Radical quenching experiments specified the main active species involved while the consequent step-scheme (S-scheme) charge transfer mechanism was proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号