首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1590篇
  免费   116篇
  国内免费   39篇
电工技术   45篇
综合类   112篇
化学工业   821篇
金属工艺   97篇
机械仪表   4篇
建筑科学   4篇
矿业工程   2篇
能源动力   28篇
轻工业   54篇
石油天然气   33篇
武器工业   2篇
无线电   83篇
一般工业技术   437篇
冶金工业   4篇
原子能技术   1篇
自动化技术   18篇
  2024年   3篇
  2023年   18篇
  2022年   23篇
  2021年   31篇
  2020年   44篇
  2019年   52篇
  2018年   46篇
  2017年   49篇
  2016年   55篇
  2015年   45篇
  2014年   70篇
  2013年   84篇
  2012年   123篇
  2011年   120篇
  2010年   95篇
  2009年   103篇
  2008年   102篇
  2007年   131篇
  2006年   105篇
  2005年   83篇
  2004年   77篇
  2003年   59篇
  2002年   49篇
  2001年   46篇
  2000年   37篇
  1999年   38篇
  1998年   14篇
  1997年   7篇
  1996年   12篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
排序方式: 共有1745条查询结果,搜索用时 15 毫秒
21.
Polyaniline doped with nonoxidizing Bronsted acids is recognized as a conducting material, as its electrical conductivity changes with percentage of doping. In the present work, different percentages of doped polyaniline were blended with polyacrylamide and their electrical conductivities as well as the positron annihilation lifetimes were measured. Analysis of data yielded three lifetime components. It was observed that the value of the short lifetime component remained constant for doping concentration, whereas that of the intermediate component τ2 decreased. The relative intensity pertaining to τ2, however, increased with the increase in doped PANI concentration. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 930–933, 2003  相似文献   
22.
碘掺杂聚苯胺催化合成苯甲醛-1,2-丙二醇缩醛   总被引:3,自引:1,他引:3  
自制了PAn(聚苯胺)-I2(碘)催化剂,并对其结构进行了表征。通过苯甲醛和1,2-丙二醇为原料合成苯甲醛-1,2-丙二醇缩醛,探讨了PAn-I2催化剂对缩醛反应的催化活性,表明PAn-I2是合成苯甲醛-1,2-丙二醇缩醛的良好催化剂。系统地研究了原料配比、催化剂用量、带水剂用量、反应时间诸因素对产品收率的影响,在n苯甲醛∶n1,2-丙二醇=1∶1.5、催化剂用量为反应物料总质量的0.98%、带水剂环己烷用量为14mL、反应时间2h的优化条件下,苯甲醛-1,2-丙二醇缩醛的收率可达91.0%。  相似文献   
23.
The dc electrical conductivity (σ) of HCl‐protonated polyaniline, polypyrrole, and their blends was measured from 80 to 300 K for thermal aging times between approximately 0 and 600 h. The thermal aging took place at 70°C under room atmosphere. The change of σ with the temperature (T) and the decrease of σ with the thermal aging time (t) are consistent with a granular metal type structure, in which conductive grains are randomly distributed into an insulating matrix. Aging makes the grains shrink in a corrosion‐like process. From σ = σ(T) measurements the ratio s/d, where s is the average separation between the grains and d their diameter, as well as the rate d(s/d)/dt of their decrease with t were calculated. These revealed that the conductive grains consist of a shell, in which aging proceeds at a decreasing rate, and a central core, which is consumed at a much slower rate. Our measurements not only permitted the estimation of the shell thickness, which lies between 0 and 5 Å, but also gave quantitative information about the quality of the shells and the cores from their aging rates. The shells are consumed with an average rate of d(s/d)/dt = 6.6 × 10?4 (h?1), which is about 5 times greater than the more durable cores. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 117–122, 2005  相似文献   
24.
In order to investigate the transmission properties in the whole solar spectrum for individual electrochromic layers in solid state devices incorporating polyaniline (PANI), Prussian Blue (PB) and tungsten oxide (WO3), the devices were fabricated with and without holes in the electrochromic coatings in several combinations. Both PANI and WO3 were deposited electrochemically on indium–tin oxide (ITO) glass substrates, while PB was deposited on top of the PANI coatings or directly on the ITO glass plates. Solid state devices were made by gluing the glass plates together with the solid polymer electrolyte poly(2-acrylamido-2-methyl-propane-sulphonic acid) (PAMPS), and thus, with and without holes in the three electrochromic coatings in different combinations, enabling us to study the optical properties of PANI, PB and WO3 separately, that is, the hole method. This method gives good qualitative, and to a certain degree quantitative, information, which may be of valuable help in designing electrochromic devices with specific tailor-made optical properties.  相似文献   
25.
聚苯胺/涤纶导电织物再掺杂及洗涤性能的研究   总被引:6,自引:0,他引:6  
采用现场吸附聚合法制备了聚苯胺 /涤纶导电织物 ,采用不同种类的酸对其进行再掺杂 ,研究了酸的种类对织物导电性能的影响 ,并对导电织物进行了洗涤实验及洗涤牢度实验。结果表明 :无机酸对导电织物的掺杂效果优于大多数有机酸。导电涤纶织物的导电性能受洗涤液酸碱度的影响 ,其中碱性洗涤液使导电性能降低 2个数量级 ,酸性洗涤液使导电性能下降 1个数量级 ,而且聚苯胺在涤纶织物表面具有良好的附着性  相似文献   
26.
导电高分子纳米复合材料研究进展   总被引:1,自引:0,他引:1  
介绍了导电高分子纳米复合材料的特点,综述了导电高分子纳米复合材料的最新研究进展,展望了导电高分子纳米复合材料的发展前景。  相似文献   
27.
磷钨酸掺杂聚苯胺催化剂催化合成苹果酯   总被引:9,自引:1,他引:9  
自制了磷钨酸(H3PW12O40)掺杂聚苯胺(PAn)催化剂H3PW12O40/PAn。以乙酰乙酸乙酯和乙二醇为原料合成苹果酯,较系统地研究了原料摩尔比、催化剂用量、反应时间诸因素对产品收率的影响。实验表明,合成苹果酯的适宜反应条件为n(乙酰乙酸乙酯)∶n(乙二醇)=1∶1 5,催化剂用量为反应物料总质量的1 0%,环己烷为带水剂,反应时间50min。上述条件下,苹果酯的收率为81 0%。  相似文献   
28.
酸化的聚苯胺是一种很有应用前途的感湿材料,沸石分子筛具有离子交换作用和较大比表面积的优良特性。将沸石分子筛与聚苯胺复合,可以增强聚苯胺的吸湿能力和载流子的移动性,进而改良感湿特性。利用结构导向剂法合成了沸石分子筛,与酸化的聚苯胺复合,并测量复合材料的感湿特性。与纯的聚苯胺相比,复合材料在低湿范围内有更好的灵敏度。  相似文献   
29.
报道了单质碘掺杂聚苯胺催化剂I2/PAn的制备,采用正交试验探讨了合成丁酮1,2-丙二醇缩酮的影响因素。实验结果表明,对丁酮1,2-丙二醇缩酮的收率影响最大的是催化剂用量,其次是反应时间和原料摩尔比。碘掺杂聚苯胺催化剂催化合成丁酮1,2-丙二醇缩酮的适宜的反应条件是n(丁酮):n(1,2-丙二醇)=1:1、5,w(催化剂)=0.4%,环己烷为带水剂,反应时间75min。在上述条件下,丁酮1,2-丙二醇缩酮的收率可达80.8%。  相似文献   
30.
Uniform polyaniline (PANI) nanoparticles with typical sizes of about 50 nm were electropolymerized on indium tin oxide surfaces in the presence of Co2+, Ni2+, Cu2+, or Zn2+. According to shaping theory, we first suggest the reason forming PANI spherical particles. Their conductivity, UV‐vis spectra, FTIR spectra, X‐ray diffraction, and thermogravimetric analysis were investigated. The conductivities and crystallinity of PANI doped with these ions are higher than those of PANI doped with HCl (PANI/HCl). Both UV‐vis absorption spectra and FTIR spectra indicate the interactions between Co2+, Ni2+, Cu2+, or Zn2+ and PANI chains. TG analysis also shows that the thermal stability of PANI doped by Co2+, Ni2+, Cu2+, or Zn2+ is lower than that of PANI/HCl. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号