首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72949篇
  免费   7335篇
  国内免费   5317篇
电工技术   2290篇
技术理论   1篇
综合类   4803篇
化学工业   18450篇
金属工艺   6420篇
机械仪表   3886篇
建筑科学   2674篇
矿业工程   2084篇
能源动力   1850篇
轻工业   4836篇
水利工程   1113篇
石油天然气   2707篇
武器工业   599篇
无线电   8976篇
一般工业技术   10621篇
冶金工业   3016篇
原子能技术   977篇
自动化技术   10298篇
  2024年   112篇
  2023年   1347篇
  2022年   1591篇
  2021年   2760篇
  2020年   2402篇
  2019年   2164篇
  2018年   1947篇
  2017年   2407篇
  2016年   2678篇
  2015年   2702篇
  2014年   3931篇
  2013年   4238篇
  2012年   4906篇
  2011年   6271篇
  2010年   4631篇
  2009年   5202篇
  2008年   4569篇
  2007年   5278篇
  2006年   4717篇
  2005年   3965篇
  2004年   3068篇
  2003年   2681篇
  2002年   2111篇
  2001年   1587篇
  2000年   1488篇
  1999年   1197篇
  1998年   931篇
  1997年   712篇
  1996年   711篇
  1995年   594篇
  1994年   569篇
  1993年   439篇
  1992年   345篇
  1991年   286篇
  1990年   215篇
  1989年   176篇
  1988年   119篇
  1987年   98篇
  1986年   109篇
  1985年   57篇
  1984年   40篇
  1983年   38篇
  1982年   45篇
  1981年   23篇
  1980年   38篇
  1979年   28篇
  1977年   17篇
  1976年   16篇
  1975年   9篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
Cell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation. Of particular note, applications involving long-term in vitro cultures, modular bioinks, high-throughput screenings, and formation of 3D cellular microenvironments can be tuned independently to suit the needs of individual cells and experimental goals. In this progress report, an overview of established materials and techniques used to fabricate single-cell microgels, as well as insight into potential alternatives is provided. This focused review is concluded by discussing applications that have already benefited from single-cell microgel technologies, as well as prospective applications on the cusp of achieving important new capabilities.  相似文献   
32.
Chronic inflammation has been associated with several chronic diseases, such as age-related macular degeneration (AMD). The NLRP3 inflammasome is a central proinflammatory signaling complex that triggers caspase-1 activation leading to the maturation of IL-1β. We have previously shown that the inhibition of the chaperone protein, Hsp90, prevents NLRP3 activation in human retinal pigment epithelial (RPE) cells; these are cells which play a central role in the pathogenesis of AMD. In that study, we used a well-known Hsp90 inhibitor geldanamycin, but it cannot be used as a therapy due to its adverse effects, including ocular toxicity. Here, we have tested the effects of a novel Hsp90 inhibitor, TAS-116, on NLRP3 activation using geldanamycin as a reference compound. Using our existing protocol, inflammasome activation was induced in IL-1α-primed ARPE-19 cells with the proteasome and autophagy inhibitors MG-132 and bafilomycin A1, respectively. Intracellular caspase-1 activity was determined using a commercial caspase-1 activity kit and the FLICA assay. The levels of IL-1β were measured from cell culture medium samples by ELISA. Cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) measurements. Our findings show that TAS-116 could prevent the activation of caspase-1, subsequently reducing the release of mature IL-1β. TAS-116 has a better in vitro therapeutic index than geldanamycin. In summary, TAS-116 appears to be a well-tolerated Hsp90 inhibitor, with the capability to prevent the activation of the NLRP3 inflammasome in human RPE cells.  相似文献   
33.
Graphene-based heterostructure composite is a new type of advanced sensing material that includes composites of graphene with noble metals/metal oxides/metal sulfides/polymers and organic ligands. Exerting the synergistic effect of graphene and noble metals/metal oxides/metal sulfides/polymers and organic ligands is a new way to design advanced gas sensors for nitrogen-containing gas species including NH3 and NO2 to solve the problems such as poor stability, high working temperature, poor recovery, and poor selectivity. Different fabrication methods of graphene-based heterostructure composite are extensively studied, enabling massive progress in developing chemiresistive-type sensors for detecting the nitrogen-containing gas species. With the components of noble metals/metal oxides/metal sulfides/polymers and organic ligands which are composited with graphene, each material has its attractive and unique electrical properties. Consequently, the corresponding composite formed with graphene has different sensing characteristics. Furthermore, working ambient gas and response type can affect gas-sensitive characteristic parameters of graphene-based heterostructure composite sensing materials. Moreover, it requires particular attention in studying gas sensing mechanism of graphene-based heterostructure composite sensing materials for nitrogen-containing gas species. This review focuses on related scientific issues such as material synthesis methods, sensing performance, and gas sensing mechanism to discuss the technical challenges and several perspectives.  相似文献   
34.
《Ceramics International》2022,48(17):24383-24392
We propose a novel approach for manufacturing dual-scale porosity alumina structures by UV curing-assisted 3D plotting of a specially formulated alumina feedstock using a thermo-regulated phase separable, photocurable camphene/triethylene glycol dimethacrylate (TEGDMA) vehicle. In particular, 3D plotting process was conducted at - 5 °C, and thus an alumina suspension prepared using liquid camphene/TEGDMA at room temperature could undergo phase separation, resulting in camphene crystals surrounded by walls comprised of liquid photopolymer enclosing alumina particles. To enhance the shape retention ability of extruded filaments, polystyrene (PS) polymer was used as the tackifier. The phase-separated feedrod could be extruded favorably through a nozzle and rapidly photopolymerized by UV light during the 3D plotting process. Three-dimensionally interconnected macropores were tightly constructed, which were separated by microporous alumina filaments, where micropores were created by the removal of camphene crystals via freeze-dying. The macroporosity of porous alumina ceramics was controlled by adjusting the distance between deposited filaments, while their microporosity was kept constant, leading to tightly tailored overall porosity and mechanical properties.  相似文献   
35.
Shape from focus (SFF) is a technique to recover the shape of an object from multiple images taken at various focus settings. Most of conventional SFF techniques compute focus value of a pixel by applying one of focus measure operators on neighboring pixels on the same image frame. However, in the optics with limited depth of field, neighboring pixels of an image have different degree of focus for curved objects, thus the computed focus value does not reflect the accurate focus level of the pixel. Ideally, an accurate focus value of a pixel needs to be measured from the neighboring pixels lying on tangential plane of the pixel in image space. In this article, a tangential plane on each pixel location (i, j) in image sensor is searched by selecting one of five candidate planes based on the assumption that the maximum variance of focus values along the optical axis is achieved from the neighborhood lying on tangential plane of the pixel (i, j). Then, a focus measure operator is applied on neighboring pixels lying on the searched plane. The experimental results on both the synthetic and real microscopic objects show the proposed method produces more accurate three-dimensional shape in comparison to conventional SFF method that applies focus measures on original image planes.  相似文献   
36.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   
37.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
38.
王鹏  李林  徐建军 《中州煤炭》2020,(9):123-127
在对沁水盆地赵庄矿煤层气开发地质、煤层气生产井资料深入研究的基础上,分析、总结了区内煤层气直井低产原因,并据此提出了区内地面抽采后续开发方向。研究认为:3号煤层气含量偏低、含气饱和度低、临储比低,致使排采阶段气含量可降幅度低,是其低产的宏观表征;3号煤储层不匹配孔级,较差连通性,即微、小孔为主,中孔次之,大孔不发育,微裂隙连通性差,致使扩散缓慢、影响储层改造和抽采效果,是其低产的微观表征;3号煤层远高于顶底板塑性及相近的水平应力,进一步造成改造缝长受限,泄流面积不足。因此,建议区内后续地面抽采方式应以增大泄流面积开发方式为主。  相似文献   
39.
Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.  相似文献   
40.
《能源学会志》2020,93(1):152-164
The ignition, injection, and micro-explosion characteristics of aviation fuel (RP-3)/ethanol mixed droplets and biodiesel/ethanol mixed droplets at different proportions under high temperature conditions (420 °C) were compared using an experimental setup. A device for measuring small droplet volumes was designed using an infusion set and different types of needles, and a corresponding equation was established. Mixed droplets suspended on high-temperature resistance nichrome wire with a diameter of 0.2 mm were heated by sending them to a position approximately 2 mm from the forklift preheating plug using a moving rail. SLR and high-speed cameras were used to observe the flame structure as well as the injection and micro-explosion of the mixed droplets during combustion, respectively. Expansion, injection, and micro-explosion were observed in the biodiesel/ethanol mixed droplet experiments when the biodiesel content was 60%. Although the micro-explosion of mixed droplets of aviation fuel/ethanol was not observed, expansion and ejection of the droplets were observed. Image Pro-plus software was used to calculate the diameters at different times in the combustion cycle of the droplets. Through this analysis, the occurrence of micro-explosion was described, and a model for the calculation of micro-explosion strength was established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号