首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
综合类   6篇
金属工艺   16篇
机械仪表   4篇
武器工业   5篇
一般工业技术   14篇
冶金工业   6篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2006年   4篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有51条查询结果,搜索用时 312 毫秒
31.
Sm12.7Fe86.3Nb1合金的氢处理   总被引:5,自引:0,他引:5  
Sm12.7Fe86.3Nb1合金在不同温度下氢爆(HD)及氢化-歧化-解吸-再复合(HDDR)处理时,100℃时可氢化形成Sm2(Fe,Nb)17Hy,随着温度升高氢化速度加快,到400℃时单胞体积最大膨胀了3.38%.超过500℃时Sm2(Fe,Nb)17Hy H2→SmHy α-Fe(Nb)发生歧化,直到900℃仍旧存在,故氢爆温度应低于500℃.解吸与再复合过程在超过700℃时可能以SmHy α-Fe(Nb)→Sm2(Fe,Nb)17 H2方式进行.在连续的HDDR处理过程中,吸氢-歧化在升温(400℃/h)的过程中即已完成,而解吸-再复合在保温时与歧化阶段达到平衡,即SmHy α-Fe(Nb)←→Sm2(Fe,Nb)17 H2,抽真空是使该反应向右进行的主要驱动力.在HDDR过程中破坏试样的原颗粒尺寸会残留较多的软磁α-Fe相而恶化氮化后的磁性能,HDDR后残留的α-Fe相含量均高于退火态的残留量,2次循环后磁粉的矫顽力较高.HDDR使粉末颗粒表面产生裂纹,再复合后的Sm2(Fe,Nb)17颗粒细小均匀,尺寸分布在几十纳米到300 nm之间.  相似文献   
32.
In this paper,SmCo6.9 Hf0.1 as-cast alloys and ribbons with the addition of either graphite(C) or carbon nanotubes(CNTs) were prepared by arc melting and melt-spinning,respectively.The effects of adding carbon on the structure and magnetic properties SmCo6.9 Hf0.1 were investigated by means of X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),magnetic force microscopy(MFM) and vibrating sample magnetometer(VSM).It was found that the microstructure and magnetic structure of SmCo6.9 Hf0.1 ribbons were changed obviously due to the introduction of C or CNTs,although their crystal structure was characterized as the same Sm(Co,Hf)7 single phase,no matter carbon was added or not.As a result,the magnetic properties of carbon-contained ribbons were enhanced in a certain degree.This was considered to be related to the refined equiaxed grains,small domain size and the pinning effect of C or CNTs-rich regions.The magnetic properties of SmCo6.9 Hf0.1(CNTs)0.05 ribbons reached Hc =12.5 kOe,Mr =57.0 emu/g and Mr/M2 T =0.788.  相似文献   
33.
纳米材料合成与制备综述   总被引:1,自引:0,他引:1  
综述了纳米微粒材料的合成制备方法 ,纳米微粒的制备方法分成两大类 ,即气相法和液相法。  相似文献   
34.
采用熔体快淬法制备了Nd2(FeCo)14B/-Fe双相纳米晶永磁材料,利用XRD、SEM和TEM方法研究加入Co元素对该材料铸态、熔体快淬以及晶化过程中微观组织和物相转变规律的影响.确定以40m/s的钼辊线速度熔体快淬实现较为理想的非晶化、在750℃下保温0.5h的晶化工艺下可以获得50nm左右的较为理想的显微组织.  相似文献   
35.
65Mn钢圆锯片基体的热处理   总被引:7,自引:2,他引:5  
65Mn钢φ1600mm圆锯片基体的淬火变形是影响产品质量和成品率的关键。研究发现,原材料的带状组织和淬火工艺的不合理是造成锯片基体淬火变形的两个主要原因。通过增加正火,控制淬火参数,改变淬火方法,达到了减少热处理变形的目的。  相似文献   
36.
对3:29型纳米复合永磁材料的研究表明: 纳米晶复合永磁材料的磁性能取决于两个主要方面. 一是要求硬磁相有尽可能高的内禀矫顽力和尽可能高的磁晶各向异性; 二是硬磁相和软磁相均要求有晶粒细小且分布均匀的显微结构特别是软磁相晶粒尺寸尽可能达到纳米尺寸. 通过对非晶态的快淬合金粉末进行400 ℃预退火8 min处理, 以及在1.0~1.2 Mpa的氮气气氛、 750 ℃温度下晶化10 min, 然后直接降温至550 ℃, 进行氮化, 较好地控制了晶粒的不均匀长大, 使氮化进行得更加充分, 显著地改善了合金氮含量.  相似文献   
37.
制备Sm2Fe17Nx稀土永磁粉的工艺研究现状   总被引:5,自引:0,他引:5  
综述了制备Sm2Fe17Nx稀土永磁粉的主要方法,指出对现有工艺的深入研究与不断改进,开发新工艺,开创新技术,探索出一条成熟的,经济实用的生产工艺线路,对获得高性能的Sm2Fe17Nx磁体,并使之成为具有竞争力的第四代稀土永磁体,有相当重要的意义,此外还对如何控制工艺中影响Sm2Fe17Nx磁性能的一些主要因素做了简要分析。  相似文献   
38.
HDDR处理的不同钐含量Sm2Fe17型合金及氮化物的研究   总被引:1,自引:0,他引:1  
通过采用电弧炉冶炼、HDDR及氮化的方法,对Sm2Fe17型合金及其氮化物的组织形貌、物相及磁性能进行研究发现,多补偿添加25%钐可使Sm2Fe17型合金退火后的α-Fe含量小于2%.HDDR后的粉末颗粒表面由蜂窝状孔洞、密堆积小颗粒及弥散细小颗粒组成.不同次数HDDR循环处理后的主相均表现为与退火后相同的Sm2Fe17结构及易面磁化.HDDR后α-Fe的含量增加,单胞体积膨胀△V/V0.35%.氮化后Sm2Fe17晶格膨胀形成Sm2Fe17Nx主相,α-Fe相膨胀小,氮化增加α-Fe含量,多补偿Sm和延长氮化时间对减少α-Fe含量有利.随着氮化时间的延长,粉末中的氮含量增加,而且细粉氮化速度快,其中Sm12.8Fe87.2细粉氮化速度最快.补偿足够的钐可提高磁性能,从提高矫顽力角度看,多添加25%Sm与40%Sm效果相当,但从提高剩磁角度看,多添加钐到40%更好.  相似文献   
39.
通过采用粉末冶金法及密封氮化的方法,对添加不同钐含量的Sm2Fe17型合金及其氮化物的组织形貌、物相组成与结构及磁性能进行了研究。结果发现,多补偿添加25%钐可以使Sm2Fe17型合金退火态的α—Fe含量小于2%。Sm-Fe合金冶炼后的主相均表现为菱方Th2zn17型结构,但快冷时优先沿{300}和{220}面长大。氮化后Sm2Fe17晶格膨胀形成Sm2Fe17N,主相,而α—Fe的X射线特征峰未见明显移动。Sm14.2FeB58合金晶胞膨胀相对较小,而Sm12.8Fe87.2晶胞膨胀较大,在氮化20h时有最大△V/V=8.36%:氮化增加合金中的α—Fe含量。Sm14.2Fes5.8N,的剩磁最高为59.5Am^2/kg,S1l0.5Fe89.5Nx磁化强度最高值为193.6Am^2/kg,Sm12.8Fe87.2Nx合金的所有磁性能值基本分布在Sm14.2Fe85.8Nx和Sm10.5Fe89.5Nx的值之间。  相似文献   
40.
本文对用Finemet型Fe73Si15Nb3B8Cu1快淬薄带制备的铁芯增加预退火处理,再在540 oC晶化退火处理得到退火铁芯。结果表明,随着预退火温度提高,预退火的薄带及再经晶化退火的薄带的韧性均逐渐降低,预退火后非晶薄带的第一晶化温度变化不大,而第二晶化峰值温度向高温方向偏移,预退火扩大了非晶薄带晶化退火的温度范围,有利于获得性能更加稳定的非晶纳米晶薄带;增加预退火处理的薄带的晶粒尺寸比直接晶化退火薄带的晶粒分布更均匀,其中在450 oC预退火的薄带经晶化退火后,晶粒尺寸在8~15 nm之间。增加预退火的铁芯样品,其振幅磁导率和铁损较直接退火的均有明显改善,其中经450 oC预退火的铁芯具有最大的振幅磁导率(μa=8.6×104, f=10 kHz)和最小的交流铁损(P0.5/10k=8.7 W/kg),分别较直接退火的铁芯升高了16.0%,下降了17.1%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号