首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2518篇
  免费   28篇
  国内免费   46篇
电工技术   19篇
综合类   79篇
化学工业   198篇
金属工艺   117篇
机械仪表   262篇
建筑科学   211篇
矿业工程   100篇
能源动力   48篇
轻工业   31篇
水利工程   25篇
石油天然气   123篇
武器工业   33篇
无线电   62篇
一般工业技术   850篇
冶金工业   267篇
原子能技术   67篇
自动化技术   100篇
  2024年   1篇
  2023年   11篇
  2022年   56篇
  2021年   36篇
  2020年   31篇
  2019年   31篇
  2018年   32篇
  2017年   38篇
  2016年   69篇
  2015年   130篇
  2014年   98篇
  2013年   99篇
  2012年   107篇
  2011年   211篇
  2010年   169篇
  2009年   200篇
  2008年   175篇
  2007年   152篇
  2006年   134篇
  2005年   122篇
  2004年   114篇
  2003年   75篇
  2002年   81篇
  2001年   64篇
  2000年   31篇
  1999年   60篇
  1998年   54篇
  1997年   37篇
  1996年   51篇
  1995年   32篇
  1994年   27篇
  1993年   10篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   10篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1975年   1篇
排序方式: 共有2592条查询结果,搜索用时 15 毫秒
61.
The paper presents a new approach for the prediction of ductile fracture occurrence in multi-stage cold forging process chains. The approach combines the fracture criterion proposed by Xue and Wierzbicky with a linear damage accumulation law. Thanks to this feature, the approach is capable of predicting both the location where the failure events occur under the action of external loading and the time they take to be generated. An application to the multi-stage cold forging of a C35 Torx-type socket screw carried out on a double-blow header is presented and results of predictions are compared with experimental observations.  相似文献   
62.
An improved version of dual-mechanism constitutive model was proposed to describe thermo-mechanical response of amorphous polymers below and above glass transition temperature (θg). Material property definitions and plastic flow rules were revisited to provide a smooth and continuous transition in material response around θg. The elastic-viscoplastic constitutive model was developed based on thermodynamics framework and was implemented in a fully coupled thermo-mechanical simulation of non-isothermal testing of PMMA in Part II [Gunel, E. M., Basaran, C., 2010. Damage characterization in non-isothermal stretching of acrylics. Part II: Experimental validation. Mechanics of Materials]. For damage evolution in complex thermo-mechanical problems such as polymer processing operation, irreversible entropy production was considered as the measure of damage.  相似文献   
63.
Influence of temperature and strain rate on damage accumulation and large deformation behavior of acrylics was investigated under conditions similar to actual polymer processing. Poly(methyl methacrylate) (PMMA) samples were stretched to large strains at different rates under transient thermal conditions. During testing, specimens were cooled down from temperatures above glass transition temperature (θg) to temperatures well-below θg inducing a transition from rubbery state to solid state. Contrary to common practice of studying thermo-mechanical coupling in terms of adiabatic heating; in proposed experimental study, temperature effect on mechanical response of material was emphasized by externally intervening temperature variation within specimen. An improved version of dual-mechanism constitutive model presented in Part I [Gunel, E.M., Basaran, C., 2010. Damage characterization in non-isothermal stretching of acrylics. Part I: Theory. Mechanics of Materials] was proposed to predict thermo-mechanical response of amorphous polymer below and above θg. Applicability of proposed constitutive model for the specific case of non-isothermal stretching of PMMA at different test conditions was demonstrated by incorporating it into a finite element scheme. Constitutive model was reasonably accurate to capture observed temperature-displacement-force history in experimental study. Damage evolution under different testing conditions was studied in terms of irreversible thermal and mechanical entropy production.  相似文献   
64.
The present study examines the tensile behaviour of composite structures repaired by bonding external patches. Various patches of different stacking sequences placed on both sides of the parent plate were considered. Damage development and the failure process of the repaired plates were analyzed and a parent plate fracture model has been proposed. Optimised patch repairs were calculated by finite element modelling. It was found that high stress concentration along the longitudinal edges of circular patches and/or at the transverse edges of the hole leads to early damage initiation in the parent plate. However, the position of damage initiation and the process of damage progression depend particularly on the properties of repair patches. In order to optimise patch repairs, finite element modelling was used and it was founded possible to attain over 90% of the strength of an unnotched specimen. The optimised patch design can be characterised by an optimal strength ratio R*, which should be minimized when selecting repair parameters.  相似文献   
65.
The compressive mechanical properties of three dimensional (3D) braided composites are of key concern for design in actual engineering application. A representative volume cell (RVC) is chosen to study the uniaxial compressive mechanical properties of the braided composites with different braid angles by combing damage theory and finite element method. The fiber misalignment and longitudinal shear nonlinearity of braid yarn are considered in the computation model. And their influences on the compressive behavior of the braided composites are also evaluated. The damage development of constituents within the braided composites are obtained and analyzed. The main damage and failure modes and their interaction of braid yarn are provided as well. The numerical results are found that the compressive mechanical behavior of the braided composites with lower braid angle is sensitive to the fiber initial imperfection of braid yarn. The strength of the braided composites with different braid angle is controlled by the different microscopic failure modes.  相似文献   
66.
This paper presents a three-dimensional continuum damage mechanics-based material model which was implemented in an implicit finite element code to simulate the progressive intralaminar degradation of fibre reinforced laminates. The damage model is based on ply failure mechanisms and uses seven damage variables assigned to tensile, compressive and shear damage at a ply level. Non-linear behaviour and irreversibility were taken into account and modelled. Some issues on the numerical implementation of the damage model are discussed and solutions proposed. Applications of the methodology are presented in Part II [1].  相似文献   
67.
The damage mechanisms of short glass fibre reinforced polypropylene (PP) and polybutene-1 (PB-1) materials were investigated. For this purpose, in situ tensile tests were conducted in the environmental scanning electron microscope (ESEM) while simultaneously recording the acoustic emission (AE). To be able to observe damage mechanisms directly during loading, notched specimens were used. This method allows the direct correlation of the recorded load - elongation data with observed damage mechanisms, as well as correlations with acoustic emission data. Hence, it is possible to describe the damage kinetics of short glass fibre composite.It was found that different bonding conditions of the two investigated materials result in different damage mechanisms as well as in different AE behaviour. For fibre reinforced PP with excellent bonding conditions of the fibres in the polymeric matrix, fibre fracture, slipping of fibres in the delamination area, debonding and pull-out with matrix yielding was observed. The determined AE parameter amplitude Ap and energy EAE for the PB-1 material are lower because of the weak bonding of the fibres to the PB-1-matrix. Hence, energy dissipative damage mechanisms like pull-out with matrix yielding can occur only in a limited part of such materials.  相似文献   
68.
A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were considered: “hierarchical tree” (bundles-of-bundles of fibers) and self-similar particle and fiber reinforced composite (in which reinforcements at each scale level represents composites in turn consisting of lower level reinforcements and matrix). For the case of the hierarchical tree (“bundle-of-bundles” material), it was observed that the increase in the amount of hierarchy levels leads to the lower strength of material. In the self-similar fiber reinforced matrix materials, as differed from the hierarchical trees, the damage resistance of the hierarchical materials increases with increasing the amount of hierarchy levels. The effect of mixed fiber and particle reinforcement on the damage resistance of the hierarchical composites is investigated as well.  相似文献   
69.
The presented work focuses on the examination of the 3D shear damage behaviour and its phenomenological failure process of a thermoplastic composite made of E-glass/polypropylene hybrid yarn with a woven reinforcement. Experimental shear characterisation is performed by means of the Iosipescu testing approach for both in-plane and through-thickness directions. A procedure for the manufacturing of through-thickness shear specimens is presented in this study. The characterisation of the chronological failure process and deformation analysis is supported by high speed camera system and Digital Image Correlation. Based on the experimental observations, material modelling strategies are derived and performed within the finite element environment Ls-Dyna.  相似文献   
70.
This paper presents results of an experimental investigation on the impact response of repaired and unrepaired glass/epoxy composite plates. Repaired samples were prepared by two different manufacturing methods; vacuum assisted resin infusion process and hand lay-up technique. In order to compare impact response of the repaired and unrepaired samples a number of single impact tests were performed under various impact energies. Damage process of the samples is analyzed from cross-examining load–deflection curves and damaged specimens. From the visual inspection, for the impacted side of the samples, it is noted that the main damage modes for repaired samples are matrix and fiber cracks around point of impact and delaminations while severe matrix cracks expanded through fiber directions are the dominant damage mode for unrepaired samples. At the back surfaces, delaminations and fiber–matrix debonding oriented in the fiber directions are observed for unrepaired samples. However, for repaired samples the fiber fractures through repair line as well as the delaminations become dominant modes. For a reasoning justification in discussing impact test results, interlaminar fracture toughness (Mode I and Mode II) and flexural tests for repaired and non-repaired samples were also conducted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号