首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2518篇
  免费   28篇
  国内免费   46篇
电工技术   19篇
综合类   79篇
化学工业   198篇
金属工艺   117篇
机械仪表   262篇
建筑科学   211篇
矿业工程   100篇
能源动力   48篇
轻工业   31篇
水利工程   25篇
石油天然气   123篇
武器工业   33篇
无线电   62篇
一般工业技术   850篇
冶金工业   267篇
原子能技术   67篇
自动化技术   100篇
  2024年   1篇
  2023年   11篇
  2022年   56篇
  2021年   36篇
  2020年   31篇
  2019年   31篇
  2018年   32篇
  2017年   38篇
  2016年   69篇
  2015年   130篇
  2014年   98篇
  2013年   99篇
  2012年   107篇
  2011年   211篇
  2010年   169篇
  2009年   200篇
  2008年   175篇
  2007年   152篇
  2006年   134篇
  2005年   122篇
  2004年   114篇
  2003年   75篇
  2002年   81篇
  2001年   64篇
  2000年   31篇
  1999年   60篇
  1998年   54篇
  1997年   37篇
  1996年   51篇
  1995年   32篇
  1994年   27篇
  1993年   10篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   10篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1975年   1篇
排序方式: 共有2592条查询结果,搜索用时 15 毫秒
51.
We derive and numerically verify scaling laws for the macroscopic fracture energy of polymers undergoing crazing from a micromechanical model of damage. The model posits a local energy density that generalizes the classical network theory of polymers so as to account for chain failure and a nonlocal regularization based on strain-gradient elasticity. We specifically consider periodic deformations of a slab subject to prescribed opening displacements on its surfaces. Based on the growth properties of the energy densities, scaling relations for the local and nonlocal energies and for the specific fracture energy are derived. We present finite-element calculations that bear out the heuristic scaling relations.  相似文献   
52.
《Ceramics International》2015,41(6):7366-7373
The accumulative damage behaviour of BN-coated Hi-Nicalon™ SiC fibre-reinforced SiC matrix composite was examined under tensile cyclic loading at room and elevated temperatures. The accumulative damage occurring during the cyclic loading was quantitatively characterised using the damage parameter obtained by the hysteresis loop curves. The damage parameter increased with increasing applied stress beyond the matrix cracking stress, and it subsequently retained a nearly constant value until just before fracture. Moreover, the dielectric constant, dielectric loss and loss tangent of the composite were measured before and after the fracture in the frequency range 1–1000 MHz. The dielectric properties had similar frequency dependency before and after the fracture. However, the dielectric constant, dielectric loss and loss tangent were lower in the post-fractured specimens than in the pristine ones. The reduction of the dielectric properties was associated with the accumulative damage stored in the specimens. In addition, the relationships between the dielectric properties and the damage parameter were described in detail.  相似文献   
53.
A model to predict time-dependent evolution of simultaneous transverse cracking developed in multiple plies during creep loading and its effects on creep of multidirectional polymer matrix composite laminates is presented. The stress states in the intact regions of the plies are determined using the lamination theory during an incremental change in time. The stored elastic energy, determined using this stress state, is compared with a critical stored elastic energy value for damage to determine if a ply would fracture after the increment. If fracture is predicted, variational analysis is used to determine the perturbation in ply stresses due to cracking. This procedure is repeated to determine the crack evolution and creep strain. Model predictions compared well with experimental results for a [±θm/90n]s laminate.  相似文献   
54.
Technical ceramics exhibit exceptional high-temperature properties, but unfortunately their extreme crack sensitivity and high melting point make it challenging to manufacture geometrically complex structures with sufficient strength and toughness. Emerging additive manufacturing technologies enable the fabrication of large-scale complex-shape artifacts with architected internal topology; when such topology can be arranged at the microscale, the defect population can be controlled, thus improving the strength of the material. Here, ceramic micro-architected materials are fabricated using direct ink writing (DIW) of an alumina nanoparticle-loaded ink, followed by sintering. After characterizing the rheology of the ink and extracting optimal processing parameters, the microstructure of the sintered structures is investigated to assess composition, density, grain size and defect population. Mechanical experiments reveal that woodpile architected materials with relative densities of 0.38–0.73 exhibit higher strength and damage tolerance than fully dense ceramics printed under identical conditions, an intriguing feature that can be attributed to topological toughening.  相似文献   
55.
A novel methodology for the synchronised capture of high resolution white-light and infra-red (IR) images during a fatigue test is described. The approach allows digital image correlation (DIC) and thermoelastic stress analysis (TSA) to be applied practically simultaneously without the requirement to pause the cyclic load. The methodology is demonstrated on cross-ply carbon-epoxy specimens that have experienced damage induced by intermediate strain rate loading. Similar undamaged specimens are studied and the results from each compared. Various damage types are identified which include transverse cracking, delaminations and longitudinal splitting. The results are verified using X-ray computed tomography (CT).  相似文献   
56.
This paper studies the fatigue behavior of basalt fiber reinforced epoxy polymer (BFRP) composites and reveals the degradation mechanism of BFRP under different stress levels of cyclic loadings. The BFRP composites were tested under tension–tension fatigue load with different stress levels by an advanced fatigue loading equipment combined with in-situ scanning electron microscopy (SEM). The specimens were under long-term cyclic loads up to 1 × 107 cycles. The stiffness degradation, SN curves and the residual strength of run-out specimens were recorded during the test. The fatigue strength was predicted with the testing results using reliability methods. Meanwhile, the damage propagation and fracture surface of all specimens were observed and tracked during fatigue loading by an in-situ SEM, based on which damage mechanism under different stress levels was studied. The results show the prediction of fatigue strength by fitting SN data up to 2 × 106 cycles is lower than that of the data by 1 × 107 cycles. It reveals the fatigue strength perdition is highly associated with the long-term run-out cycles and traditional two million run-out cycles cannot accurately predict fatigue behavior. The SEM images reveal that under high level of stress, the critical fiber breaking failure is the dominant damage, while the matrix cracking and interfacial debonding are main damage patterns at the low and middle fatigue stress level for BFRP. Based on the above fatigue behavior and damage pattern, a three stage fracture mechanism model under fatigue loading is developed.  相似文献   
57.
The study of the damage sequence in polymer-based composite laminates during an impact event is a difficult issue. The problem can be more complex when the plies are thin. In this paper, quasi-static indentation tests were conducted on thin-ply laminates to understand qualitatively the damage mechanisms and their sequence during low-velocity impact loading. TeXtreme® plain weave plies were used with two different thicknesses, 0.08 mm and 0.16 mm (referenced as ultra-thin-ply and thin-ply, respectively), and tested under different load levels. Load–displacement curves were analyzed and the extent of damage was inspected using optical microscopy and ultrasonic technique. The results showed that the damage onset occurs earlier in thin-ply laminates. The damage onset in thin-ply laminates is matrix cracking which induces delaminations, whereas for ultra-thin-ply laminates is due to delaminations which are induced by shear forces and small amount of matrix cracking. Moreover, the fiber breakage appears earlier in ultra-thin-ply laminates.  相似文献   
58.
In this paper, the modal-based indices are used in damage identification of the wind turbine blade. In contrast of many of previous researches, the geometric nonlinearity due to the large structural deformation of the modern wind turbines blade is considered. In the first step, the finite element model (FEM) of the rotating blade is solved to obtain the modal features of the deformed structure under operational aerodynamic loading. Next, the accuracy and efficiency of the various modal-based damage indices including the frequency, mode shape, curvature of mode shape, modal assurance, modal strain energy (MSE) and the difference of indices (between the intact and damaged blades) are investigated. To adapt the MSE index calculation in nonlinear modeling, a new approach is introduced to include the effects of the structural nonlinearity. Furthermore, the effect of the damage length, its location and severity and also the effect of rotational speed and amplitude of loading are studied. The generic 5-MW NREL blade is used for the simulation study. The results show enough sensitivity of the mode shape curvature and MSE indices to the local damages. Moreover, the importance of geometric nonlinearity in the damage detection of the modern wind turbines is demonstrated.  相似文献   
59.
A material model based on the Puck phenomenological failure criteria for fibre and inter-fibre failure of glass-fibre and carbon-fibre reinforced polymer composites is presented. The model is applied through a user-defined material subroutine for 3D shell elements. Sub-modelling is used for detailed analysis of the highest stressed regions in the blades. The material model is incorporated into a methodology for the design and analysis of composite tidal current turbine blades. The methodology employs an iterative design process with respect to a number of failure criteria to ensure optimal structural and material performance of the blade. The methodology is automated using the Python programming language to enable efficient variation of model parameters for various design conditions. The forces acting on the blades are determined from blade element momentum theory for a number of turbine operating conditions. The results of a design case study for a typical horizontal axis device are presented to demonstrate the methodology.  相似文献   
60.
The aim of presented paper is modeling of degradation processes in historical mortars exposed to moisture impact during freezing. Internal damage caused by ice crystallization in pores is one of the most important factors limiting the service life of historical structures. Coupling the transport processes with the mechanical part will allow us to address the impact of moisture on the durability, strength and stiffness of mortars. This should be accomplished with the help of a complex thermo-hygro-mechanical model representing one of the prime objectives of this work. The proposed formulation is based on the extension of the classical poroelasticity models with the damage mechanics. An example of two-dimensional moisture transport in the environment with temperature below freezing point is presented to support the theoretical derivations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号