首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34238篇
  免费   2406篇
  国内免费   1419篇
电工技术   509篇
技术理论   1篇
综合类   2336篇
化学工业   18895篇
金属工艺   1382篇
机械仪表   737篇
建筑科学   223篇
矿业工程   302篇
能源动力   668篇
轻工业   1284篇
水利工程   41篇
石油天然气   1856篇
武器工业   388篇
无线电   1748篇
一般工业技术   4935篇
冶金工业   636篇
原子能技术   157篇
自动化技术   1965篇
  2024年   23篇
  2023年   354篇
  2022年   434篇
  2021年   743篇
  2020年   701篇
  2019年   655篇
  2018年   686篇
  2017年   811篇
  2016年   1005篇
  2015年   1018篇
  2014年   1659篇
  2013年   1681篇
  2012年   2145篇
  2011年   2675篇
  2010年   2019篇
  2009年   2235篇
  2008年   1919篇
  2007年   2484篇
  2006年   2256篇
  2005年   2076篇
  2004年   1695篇
  2003年   1559篇
  2002年   1388篇
  2001年   1132篇
  2000年   951篇
  1999年   774篇
  1998年   634篇
  1997年   439篇
  1996年   389篇
  1995年   327篇
  1994年   298篇
  1993年   229篇
  1992年   169篇
  1991年   117篇
  1990年   105篇
  1989年   55篇
  1988年   45篇
  1987年   31篇
  1986年   20篇
  1985年   19篇
  1984年   24篇
  1983年   13篇
  1982年   13篇
  1981年   12篇
  1980年   7篇
  1979年   15篇
  1978年   9篇
  1977年   5篇
  1975年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Disulfide-rich macrocyclic peptides—cyclotides, for example—represent a promising class of molecules with potential therapeutic use. Despite their potential their efficient synthesis at large scale still represents a major challenge. Here we report new chemoenzymatic strategies using peptide ligase variants—inter alia, omniligase-1—for the efficient and scalable one-pot cyclization and folding of the native cyclotides MCoTI-II, kalata B1 and variants thereof, as well as of the θ-defensin RTD-1. The synthesis of the kB1 variant T20K was successfully demonstrated at multi-gram scale. The existence of several ligation sites for each macrocycle makes this approach highly flexible and facilitates both the larger-scale manufacture and the engineering of bioactive, grafted cyclotide variants, therefore clearly offering a valuable and powerful extension of the existing toolbox of enzymes for peptide head-to-tail cyclization.  相似文献   
62.
Hydroxynitrile lyase (HNL)-catalysed stereoselective synthesis of β-nitro alcohols from aldehydes and nitroalkanes is considered an efficient biocatalytic approach. However, only one S-selective HNL—Hevea brasiliensis (HbHNL)—exists that is appropriate for the synthesis of (S)-β-nitro alcohols from the corresponding aldehydes. Further, synthesis catalysed by HbHNL is limited by low specific activity and moderate yields. We have prepared a number of (S)-β-nitro alcohols, by kinetic resolution with the aid of an R-selective HNL from Arabidopsis thaliana (AtHNL). Optimization of the reaction conditions for AtHNL-catalysed stereoselective C−C bond cleavage of racemic 2-nitro-1-phenylethanol (NPE) produced (S)-NPE (together with benzaldehyde and nitromethane, largely from the R enantiomer) in up to 99 % ee and with 47 % conversion. This is the fastest HNL-catalysed route known so far for the synthesis of a series of (S)-β-nitro alcohols. This approach widens the application of AtHNL for the synthesis not only of (R)- but also of (S)-β-nitro alcohols from the appropriate substrates. Without the need for the discovery of a new enzyme, but rather by use of a retro-Henry approach, it was used to generate a number of (S)-β-nitro alcohols by taking advantage of the substrate selectivity of AtHNL.  相似文献   
63.
This work aims to study the synthesis conditions effect on the photocatalytic properties of manganese tungstate (MnWO4) for H2 production by the water splitting reaction under visible light irradiation. This is achieved by relating the materials characterization and photocatalytic evaluation of MnWO4 at different synthesis conditions. MnWO4 was synthesized through a precipitation reaction between Mn2+ and (WO4)2- ionic species, while adding oleic acid (OA) as surfactant at two concentrations (0.1% and 1% V) and using three different stirring methods: magnetic stirring (AM), ultrasound (US) and high-shear stirring (UT). Characterization was carried out by TGA, XRD, BET surface area, UV–Vis spectroscopy and FESEM. XRD patterns confirm the wolframite structure of MnWO4. BET surface area increased by using UT stirring. UV–Vis spectroscopy results revealed indirect transition Eg values of ≈2 eV, favorable for the MnWO4 photoactivation under visible light irradiation. During the photocatalytic evaluation, sample 1%-UT produced the highest H2 amount among all samples with a value of 72 μmolH2g−1, which was far higher compared to WO3, which was taken as a reference photocatalyst.  相似文献   
64.
In this study, a simple hydrothermal synthesis method was adapted for the preparation of Co-doping Co2+/F-/TiO2 nanotubes photocatalyst, and the micro-nano structure of catalysts prepared by biomimetic technology which makes the catalyst have super-oleophilicity property. Co2+/F-/TiO2 revealed improved photocatalytic performance for denitrification of light oil compared to single TiO2 photocatalysts. The enhance of photocatalytic activity can be attributed to narrowing the band gap, increasing the light response wavelength and exposing more highly active crystal surfaces due to synergistic effects of Co2+ and F? in the photocatalyst.  相似文献   
65.
Silver nanoparticles (AgNP) suspensions were biosynthesized by silver ions reduction in the presence of collagen, a nontoxic, organic polymer, intending to improve their medical use in periodontitis treatment. Spectrophotometric measurements showed a time- and concentration-dependent increase of AgNP formation in each suspension variant. Transmission electron microscopy revealed spherical morphology of AgNP in collagen and their mean diameter size was around 30?nm. The particle size distribution and zeta potential values of AgNP in collagen were determined by dynamic light scattering measurements. The surface charge of AgNP in collagen was positive, while commercial AgNP stabilized in citrate had negative surface charge. In vitro cytotoxicity testing of AgNP in collagen showed that they were biocompatible with human gingival fibroblasts in a wider range of concentrations than commercial nanoparticles. The antibacterial activity of AgNP in collagen against two pathogenic strains present in the periodontal pocket was dose-dependent and higher than that of AgNP in citrate. All these results demonstrated that AgNP prepared in collagen gel had improved properties, like small diameter, positive surface charge, high biocompatibility in human gingival fibroblasts, efficiency against bacterial growth and, thus, better therapeutic potential in periodontal disease treatment.  相似文献   
66.
可见光催化具有无污染、节能、优秀的官能团兼容性及良好的化学选择性,目前已经作为重要的有机合成手段之一,绿色化学在氧气与可见光的结合下得到了极大的发展,本文从白藜芦醇及其类似物的合成、芳构化反应和α位醛酮羰基的取代反应催化几个方面简略阐述了可见光催化需氧氧化在有机合成中的应用方式。  相似文献   
67.
Designing crystalline solids with improved properties or performances remains a challenging task, despite great strides that have been made within the field of crystal engineering since its birth several decades ago. Herein, we are bringing examples that illustrate recent successes in taking supramolecular synthetic guidelines from the organic crystal engineering and adjusting those to metal-containing systems, particularly to the lower-dimensional ones. The versatility of calculated molecular electrostatic potential (MEP) as a new crystal engineering tool is demonstrated.  相似文献   
68.
以硫脲法工艺路线合成了单体型碳化二亚胺抗水解稳定剂SW-100,通过红外光谱、元素分析以及液相色谱考察了产物的结构、纯度。红外光谱和元素分析确定了合成产物结构正确,液相色谱确定产物纯度达到99%以上。在结构和纯度确定的基础上,将合成产物添加到聚乳酸中进行水解性能测试。结果表明,在1%添加量下聚乳酸拉伸强度保持率较纯树脂提高了80%。  相似文献   
69.
In the present work, the effect of carbon shell around size selected palladium (Pd) nanoparticles on hydrogen (H2) sensing has been studied by investigating the sensing response of Pd-C core-shell nanoparticles having a fixed core size and different shell thickness. The H2 sensing response of sensors based on Pd and Pd-C nanoparticles deposited on SiO2 and graphene substrate has been measured over a temperature range of 25 °C–150 °C. It is observed that Pd-C nanoparticle sensor shows higher sensitivity with increase in shell thickness and faster response/recovery in comparison to that of Pd nanoparticle samples. Pd-C nanoparticles show room temperature H2 sensitivity in contrast to Pd nanoparticles which respond only at higher temperatures. Role of carbon shell is also understood by investigating H2 sensing properties of Pd and Pd-C nanoparticles on graphene substrates. These results show that higher catalytic activity and electronic interaction at Pd-C interface, a complete coverage and protection of Pd surface by carbon and presence of structural defects in nanoparticle core are important for room temperature and higher sensing response.  相似文献   
70.
Electricity and water from renewable hydropower plant are used as input for electrolysis unit to generate hydrogen, while CO2 is captured from 600 MW supercritical coal power plant using post-combustion chemical solvent based technology. The captured CO2 and H2 generated through electrolysis are used to synthesize methanol through catalytic thermo-chemical reaction. The methanol synthesis plant is designed, modeled and simulated using commercial software Aspen Plus®. The reactor is analyzed for two widely adopted kinetic models known as Graaf model and Vanden-Bossche (VB) model to predict the methanol yield and CO2 conversion. The results show that the methanol reactor based on Graaf kinetic model produced 0.66 tonne of methanol per tonne of CO2 utilized which is higher than that of the VB kinetic model where 0.6 tonne of methanol is produced per tonne of CO2 utilized. The economic analysis reveals that 1.2 billion USD annually is required at the present cost of both H2 production and CO2 abatement to utilize continuous emission of 3.2 million tonne of CO2 annually from 600 MW supercritical coal power unit to synthesize methanol. However, sensitivity analysis indicates that methanol production becomes feasible by adopting anyone of the route such as by increasing methanol production rate, by reducing levelised cost of hydrogen production, by reducing CO2 mitigation cost or by increasing the current market selling price of methanol and oxygen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号