首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   2篇
  国内免费   4篇
综合类   1篇
化学工业   14篇
金属工艺   4篇
机械仪表   4篇
建筑科学   1篇
能源动力   45篇
石油天然气   1篇
武器工业   5篇
无线电   2篇
一般工业技术   29篇
原子能技术   3篇
自动化技术   4篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   7篇
  2009年   9篇
  2008年   17篇
  2007年   1篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   12篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有113条查询结果,搜索用时 93 毫秒
71.
An experimental study of droplet combustion of nonane (C9H20) at elevated pressures burning in air is reported using low gravity and small droplets to promote spherical gas-phase symmetry at pressures up to 30 atm (absolute). The initial droplet diameters range from 0.57 to 0.63 mm and they were ignited by two electrically heated hot wires positioned horizontally on opposite sides of the droplet. The droplet and flame characteristics were recorded by a 16-mm high-speed movie and a high-resolution video camera, respectively. A photodiode is used to measure broadband gray-body emission from the droplet flames and to track its dependence on pressure. Increasing the pressure significantly influences the ability to make quantitative measurements of droplet, soot cloud, and luminous zone diameters. At pressures as low as 2 atm, soot aggregates surrounding the droplet show significant coagulation and agglomeration and at higher pressures the soot cloud completely obscures the droplet, with the result being that the droplet could not be measured. Above 10 atm radiant emissions from hot soot particles are extensive and the resulting flame luminosity further obscures the droplet. Photographs of the luminous zone in subcritical pressures show qualitatively that increasing pressure produces more soot, and the mean photodiode voltage output increases monotonically with pressure. The maximum flame and soot shell diameters shift to later times as pressure increases and the soot shell is located closer to the flame at higher pressure. The soot shell and flame diameter data are correlated by a functional relationship of reduced pressure derived from scaling the drag and thermophoretic forces on aggregates that consolidates all of the data onto a single curve.  相似文献   
72.
In order to investigate the no-vent filling performance under microgravity, the computational fluid dynamic (CFD) method is introduced to the study, where a model aiming at filling a liquid hydrogen (LH2) receiver tank is especially established. In this model, the solid and fluid regions are considered together to predict the coupled heat transfer process. The phase change effect during the filling process is also taken into account by embedding a pair of mass and heat transfer models into the CFD software FLUENT, one of which involves liquid flash driven by pressure difference between the fluid saturated pressure and the tank pressure, and the other one indicates and calculates the evaporation–condensation process driven by temperature difference between fluid and its saturated state. This CFD model, verified by experimental data, could accurately simulate the no-vent filling process with good flexibility. Moreover, no-vent filling processes under different gravities are comparatively analyzed and the effects of four factors including inlet configuration, inlet liquid temperature, initial wall temperature and inlet flow rate, are discussed, respectively. Main conclusions could be made as follows: 1) Compared to the situations in normal gravity, the no-vent filling in microgravity experiences a more adequate liquid–vapor mix, which results in a more steady pressure response and better filling performance. 2) Inlet configuration seems to have negligible effect on the no-vent filling performance under microgravity since liquid could easily reach the tank wall and then cause a sufficient fluid-wall contact under any inlet condition. 3) Higher initial tank wall temperature may directly cause a higher pressure rise in the beginning, while this effect on the final pressure is not significant. Sufficient precooling and reasonable inlet liquid subcooled degree are suggested to guarantee the reliability and efficiency of the no-vent fill under microgravity.  相似文献   
73.
Crystals of proteins or macromolecules are at the basis of X-ray crystallography to reveal structural information necessary for the understanding of their likely mode of action. However, the structural resolution is strongly dependent on the crystalline quality, which is known to be related to gravity dependent processes. The facilities and instruments used so far to grow crystals in space have mostly focused on the growing of crystals for detailed post-flight analysis on ground, and less on the understanding of phenomena associated to the crystallisation processes. The Protein Crystallisation Diagnostics Facility (PCDF), developed by Astrium under contract of the European Space Agency (ESA), allows to study with several diagnostics means in situ the crystallisation of macromolecules over long periods in microgravity. In addition, several ground models with PCDF similar capabilities were developed to allow scientists to prepare their experiments. The PCDF is installed in the European Drawer Rack (EDR), on board ESA’s Columbus Laboratory module launched in February 2008 to the International Space Station (ISS) for research in microgravity on protein nucleation and assembling sequences. The PCDF configuration for this first mission accommodates four reactors, using the batch crystallization technique. Individual process control for temperature and concentration will allow several crystallizations of solutions to be performed. Each reactor will be observed by several optical diagnostics, including video microscopy, dynamic light scattering, and Mach–Zehnder interferometry. This paper presents the overall PCDF design and details the different diagnostics allowing the scientific community to use the PCDF in orbit for microgravity research on molecule assemblies grown from solutions.  相似文献   
74.
Simon   《Technology in Society》2008,30(3-4):411
If humans are to explore space beyond low-earth orbit, their health and welfare must be ensured, not only for survival in harsh environments but also so that they can work productively. The requisite technologies, and human physiology itself, are subject to reduced levels of gravity that are indigenous to space travel. Numerous studies have shown that it will require many years of intensive research to develop reliable, efficient, and self-sustaining technologies and to understand the effects of gravity on humans. The research community that was developed to provide crucial specific information has essentially been deactivated because of budget constraints. Thus, the great engineering challenge—to develop advanced and novel technologies that will enable further space exploration—will remain for future generations.  相似文献   
75.
Microgravity experiments on droplet-array combustion were conducted under high-ambient-temperature conditions. n-Decane droplet arrays suspended on SiC fibers were inserted into a high-temperature combustion chamber and were ignited at one end to initiate the flame spread in high-temperature air. Flame-spread modes, burning behavior after the flame spread, and flame-spread rate were examined at different ambient temperatures. Experimental results showed that the appearance of flame-spread modes and the flame-spread rate were affected by the ambient temperature. The flame-spread rate increased with the ambient temperature. These facts are discussed based on the temperature effects on the droplet heating and the development of a flammable-mixture layer around the next droplet. A simple model was introduced to analyze these effects. The effects of the ambient temperature on the appearance of group combustion of the array after the flame spread and the scale effect in the flame spread are also discussed.  相似文献   
76.
Gas tungsten arc (GTA) welding was performed both in a microgravity environment and in a terrestrial environment,and the arc shapes in both environments were compared. A microgravity condition was obtained using the free fallsystem at the Japan Microgravi  相似文献   
77.
利用微重力电磁模拟的方法,对过偏晶Cu-40Pb合金熔体的凝固进行了试验研究。研究表明:在模拟微重力的环境下,施加的电磁力可使合金熔体在不混溶区内获得准失重状态,抑制了合金熔体中L2(Pb)相产生的Stockes沉积效应,在凝固组织中得到熟化后粗大的α(Cu)枝晶,S(Pb)相分布在α(Cu)枝晶间,从而消除了该合金在凝固过程中出现的重力偏析现象。  相似文献   
78.
Bubble Dynamics in Nucleate Pool Boiling on Thin Wires in Microgravity   总被引:2,自引:0,他引:2  
A temperature-controlled pool boiling (TCPB) device has been developed to study the bubble behavior and heat transfer in pool boiling phenomenon both in normal gravity and in microgravity. A thin platinum wire of 60 μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. The fluid is R113 at 0.1 MPa and subcooled by 26°C nominally for all cases. Three modes of heat transfer, namely single-phase natural convection, nucleate boiling, and two-mode transition boiling, are observed in the experiment both in microgravity aboard the 22nd Chinese recoverable satellite and in normal gravity on the ground before and after the space flight. Dynamic behaviors of vapor bubbles observed in these experiments are reported and analyzed in the present paper. In the regime of fully developed nucleate boiling, the interface oscillation due to coalescence of adjacent tiny bubbles is the primary reason of the departure of bubbles in microgravity. On the contrary, in the discrete bubble regime, it’s observed that there exist three critical bubble diameters in microgravity, dividing the whole range of the observed bubbles into four regimes. Firstly, tiny bubbles are continually forming and growing on the heating surface before departing slowly from the wire when their sizes exceed some value of the order of 10−1 mm. The bigger bubbles with about several millimeters in diameter stay on the wire, oscillate along the wire, and coalesce with adjacent bubbles. The biggest bubble with diameter of the order of 10 mm, which was formed immediately after the onset of boiling, stays continuously on the wire and swallows continually up adjacent small bubbles until its size exceeds another critical value. The same behavior of tiny bubbles can also be observed in normal gravity, while the others are observed only in microgravity. Considering the Marangoni effect, a mechanistic model about bubble departure is presented to reveal the mechanism underlying this phenomenon. The predictions are qualitatively consistent with the experimental observations.  相似文献   
79.
简要介绍一种可供选择使用的低温燃料贮箱零重力排气系统。介绍了该系统的功能及工作原理,给出了热交换器混合泵、控制阀门等主要系统组件的工作原理及结构图,回顾了热动力气系统的发展,评述了该系统的使用阶值。  相似文献   
80.
本文研究低重力环境下贮箱内液体重定位运动的动力效应及其影响,概述了模拟低重力环境下液体重定位运动的落塔试验方法,利用小模型落塔试验测定了球型贮箱内液体重定位运动的作用力作用力矩,分析了液体重定位运动的试验相似准则,讨论了液体重定位运动产生的动力交应对航天器的影响以及减小干扰的措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号